語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lattice Rules = Numerical Integration, Approximation, and Discrepancy /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Lattice Rules/ by Josef Dick, Peter Kritzer, Friedrich Pillichshammer.
其他題名:
Numerical Integration, Approximation, and Discrepancy /
作者:
Dick, Josef.
其他作者:
Pillichshammer, Friedrich.
面頁冊數:
XVI, 580 p. 32 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematics of Computing. -
電子資源:
https://doi.org/10.1007/978-3-031-09951-9
ISBN:
9783031099519
Lattice Rules = Numerical Integration, Approximation, and Discrepancy /
Dick, Josef.
Lattice Rules
Numerical Integration, Approximation, and Discrepancy /[electronic resource] :by Josef Dick, Peter Kritzer, Friedrich Pillichshammer. - 1st ed. 2022. - XVI, 580 p. 32 illus. in color.online resource. - Springer Series in Computational Mathematics,582198-3712 ;. - Springer Series in Computational Mathematics,48.
Introduction -- Integration of Smooth Periodic Functions -- Constructions of Lattice Rules -- Modified Construction Schemes -- Discrepancy of Lattice Point Sets -- Extensible Lattice Point Sets -- Lattice Rules for Nonperiodic Integrands -- Intrgration with Respect to Probability Measures -- Integration of Analytic Functions -- Korobov's p-Sets -- Lattice Rules in the Randomized Setting -- Stability of Lattice Rules -- L2-Approximation Using Lattice Rules -- L∞-Approximation Using Lattice Rules -- Multiple Rank-1 Lattice Point Sets -- Fast QMC Matrix-Vector Multiplication -- Partial Diffeential Equations With Random Coefficients -- Numerical Experiments for Lattice Rule Construction Algorithms -- References -- Index.
Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.
ISBN: 9783031099519
Standard No.: 10.1007/978-3-031-09951-9doiSubjects--Topical Terms:
669457
Mathematics of Computing.
LC Class. No.: QA297-299.4
Dewey Class. No.: 518
Lattice Rules = Numerical Integration, Approximation, and Discrepancy /
LDR
:02739nam a22004095i 4500
001
1088902
003
DE-He213
005
20220723153812.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031099519
$9
978-3-031-09951-9
024
7
$a
10.1007/978-3-031-09951-9
$2
doi
035
$a
978-3-031-09951-9
050
4
$a
QA297-299.4
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Dick, Josef.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1079566
245
1 0
$a
Lattice Rules
$h
[electronic resource] :
$b
Numerical Integration, Approximation, and Discrepancy /
$c
by Josef Dick, Peter Kritzer, Friedrich Pillichshammer.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XVI, 580 p. 32 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in Computational Mathematics,
$x
2198-3712 ;
$v
58
505
0
$a
Introduction -- Integration of Smooth Periodic Functions -- Constructions of Lattice Rules -- Modified Construction Schemes -- Discrepancy of Lattice Point Sets -- Extensible Lattice Point Sets -- Lattice Rules for Nonperiodic Integrands -- Intrgration with Respect to Probability Measures -- Integration of Analytic Functions -- Korobov's p-Sets -- Lattice Rules in the Randomized Setting -- Stability of Lattice Rules -- L2-Approximation Using Lattice Rules -- L∞-Approximation Using Lattice Rules -- Multiple Rank-1 Lattice Point Sets -- Fast QMC Matrix-Vector Multiplication -- Partial Diffeential Equations With Random Coefficients -- Numerical Experiments for Lattice Rule Construction Algorithms -- References -- Index.
520
$a
Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.
650
2 4
$a
Mathematics of Computing.
$3
669457
650
1 4
$a
Numerical Analysis.
$3
671433
650
0
$a
Computer science—Mathematics.
$3
1253519
650
0
$a
Numerical analysis.
$3
527939
700
1
$a
Pillichshammer, Friedrich.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1396127
700
1
$a
Kritzer, Peter.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1396126
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031099502
776
0 8
$i
Printed edition:
$z
9783031099526
776
0 8
$i
Printed edition:
$z
9783031099533
830
0
$a
Springer Series in Computational Mathematics,
$x
0179-3632 ;
$v
48
$3
1258881
856
4 0
$u
https://doi.org/10.1007/978-3-031-09951-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入