語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Quasispecies Equation and Classical Population Models
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Quasispecies Equation and Classical Population Models/ by Raphaël Cerf, Joseba Dalmau.
作者:
Cerf, Raphaël.
其他作者:
Dalmau, Joseba.
面頁冊數:
X, 242 p. 1 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Applied Probability. -
電子資源:
https://doi.org/10.1007/978-3-031-08663-2
ISBN:
9783031086632
The Quasispecies Equation and Classical Population Models
Cerf, Raphaël.
The Quasispecies Equation and Classical Population Models
[electronic resource] /by Raphaël Cerf, Joseba Dalmau. - 1st ed. 2022. - X, 242 p. 1 illus.online resource. - Probability Theory and Stochastic Modelling,1022199-3149 ;. - Probability Theory and Stochastic Modelling,76.
1. Introduction -- Part I.Finite Genotype Space -- 2. The Quasispecies equation -- 3. Non-Overlapping Generations -- 4. Overlapping Generations -- 5. Probabilistic Representations -- Part II. The Sharp Peak Landscape -- 6. Long Chain Regime -- 7. Error Threshold and Quasispecies -- 8. Probabilistic Derivation -- 9. Summation of the Series -- 10. Error Threshold in Infinite Populations -- Part III. Error Threshold in Finite Populations -- 11.Phase Transition -- 12. Computer Simulations -- 13. Heuristics -- 14. Shape of the Critical Curve -- 15. Framework for the Proofs -- Part IV. Proof for Wright-Fisher -- 16. Strategy of the Proof -- 17. The Non-Neutral Phase M -- 18. Mutation Dynamics -- 19. The Neutral Phase N -- 20. Synthesis -- Part V. Class-Dependent Fitness Landscapes -- 21. Generalized Quasispecies Distributions -- 22. Error Threshold -- 23. Probabilistic Representation -- 24. Probabilistic Interpretations -- 25. Infinite Population Models -- Part VI. A Glimpse at the Dynamics -- 26. Deterministic Level -- 27. From Finite to Infinite Population -- 28. Class-Dependent Landscapes -- A. Markov Chains and Classical Results -- References -- Index.
This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen’s famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright–Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.
ISBN: 9783031086632
Standard No.: 10.1007/978-3-031-08663-2doiSubjects--Topical Terms:
1390075
Applied Probability.
LC Class. No.: QA1-939
Dewey Class. No.: 510
The Quasispecies Equation and Classical Population Models
LDR
:03833nam a22004095i 4500
001
1089139
003
DE-He213
005
20220730114241.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031086632
$9
978-3-031-08663-2
024
7
$a
10.1007/978-3-031-08663-2
$2
doi
035
$a
978-3-031-08663-2
050
4
$a
QA1-939
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
072
7
$a
PB
$2
thema
082
0 4
$a
510
$2
23
100
1
$a
Cerf, Raphaël.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1396384
245
1 4
$a
The Quasispecies Equation and Classical Population Models
$h
[electronic resource] /
$c
by Raphaël Cerf, Joseba Dalmau.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
X, 242 p. 1 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Probability Theory and Stochastic Modelling,
$x
2199-3149 ;
$v
102
505
0
$a
1. Introduction -- Part I.Finite Genotype Space -- 2. The Quasispecies equation -- 3. Non-Overlapping Generations -- 4. Overlapping Generations -- 5. Probabilistic Representations -- Part II. The Sharp Peak Landscape -- 6. Long Chain Regime -- 7. Error Threshold and Quasispecies -- 8. Probabilistic Derivation -- 9. Summation of the Series -- 10. Error Threshold in Infinite Populations -- Part III. Error Threshold in Finite Populations -- 11.Phase Transition -- 12. Computer Simulations -- 13. Heuristics -- 14. Shape of the Critical Curve -- 15. Framework for the Proofs -- Part IV. Proof for Wright-Fisher -- 16. Strategy of the Proof -- 17. The Non-Neutral Phase M -- 18. Mutation Dynamics -- 19. The Neutral Phase N -- 20. Synthesis -- Part V. Class-Dependent Fitness Landscapes -- 21. Generalized Quasispecies Distributions -- 22. Error Threshold -- 23. Probabilistic Representation -- 24. Probabilistic Interpretations -- 25. Infinite Population Models -- Part VI. A Glimpse at the Dynamics -- 26. Deterministic Level -- 27. From Finite to Infinite Population -- 28. Class-Dependent Landscapes -- A. Markov Chains and Classical Results -- References -- Index.
520
$a
This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen’s famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright–Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.
650
2 4
$a
Applied Probability.
$3
1390075
650
2 4
$a
Community and Population Ecology.
$3
1365760
650
2 4
$a
Population Dynamics.
$3
578611
650
2 4
$a
Stochastic Modelling.
$3
1366661
650
2 4
$a
Biological Sciences.
$3
790542
650
0
$a
Probabilities.
$3
527847
650
0
$a
Biotic communities.
$3
565333
650
0
$a
Population biology.
$3
578610
650
0
$a
Stochastic models.
$3
683908
650
0
$a
Biology.
$3
599573
650
0
$a
Mathematics.
$3
527692
700
1
$a
Dalmau, Joseba.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1396385
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031086625
776
0 8
$i
Printed edition:
$z
9783031086649
776
0 8
$i
Printed edition:
$z
9783031086656
830
0
$a
Probability Theory and Stochastic Modelling,
$x
2199-3130 ;
$v
76
$3
1254049
856
4 0
$u
https://doi.org/10.1007/978-3-031-08663-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入