語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Parameter Estimation in Stochastic Volatility Models
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Parameter Estimation in Stochastic Volatility Models/ by Jaya P. N. Bishwal.
作者:
Bishwal, Jaya P. N.
面頁冊數:
XXX, 613 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Stochastic Modelling. -
電子資源:
https://doi.org/10.1007/978-3-031-03861-7
ISBN:
9783031038617
Parameter Estimation in Stochastic Volatility Models
Bishwal, Jaya P. N.
Parameter Estimation in Stochastic Volatility Models
[electronic resource] /by Jaya P. N. Bishwal. - 1st ed. 2022. - XXX, 613 p.online resource.
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation -- Sequential Monte Carlo Methods -- Parameter Estimation in the Heston Model -- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes -- Inference for General Semimartingales and Selfsimilar Processes -- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model -- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process -- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model -- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model -- Parameter Estimation in Student Ornstein-Uhlenbeck Model -- Berry-Esseen Asymptotics for Pearson Diffusions -- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models -- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process -- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model -- Appendix.
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
ISBN: 9783031038617
Standard No.: 10.1007/978-3-031-03861-7doiSubjects--Topical Terms:
1366661
Stochastic Modelling.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Parameter Estimation in Stochastic Volatility Models
LDR
:03312nam a22003975i 4500
001
1089416
003
DE-He213
005
20220805231000.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031038617
$9
978-3-031-03861-7
024
7
$a
10.1007/978-3-031-03861-7
$2
doi
035
$a
978-3-031-03861-7
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Bishwal, Jaya P. N.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
882223
245
1 0
$a
Parameter Estimation in Stochastic Volatility Models
$h
[electronic resource] /
$c
by Jaya P. N. Bishwal.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XXX, 613 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation -- Sequential Monte Carlo Methods -- Parameter Estimation in the Heston Model -- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes -- Inference for General Semimartingales and Selfsimilar Processes -- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model -- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process -- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model -- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model -- Parameter Estimation in Student Ornstein-Uhlenbeck Model -- Berry-Esseen Asymptotics for Pearson Diffusions -- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models -- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process -- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model -- Appendix.
520
$a
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
650
2 4
$a
Stochastic Modelling.
$3
1366661
650
1 4
$a
Mathematical Statistics.
$3
1366363
650
0
$a
Stochastic models.
$3
683908
650
0
$a
Mathematical statistics.
$3
527941
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031038600
776
0 8
$i
Printed edition:
$z
9783031038624
776
0 8
$i
Printed edition:
$z
9783031038631
856
4 0
$u
https://doi.org/10.1007/978-3-031-03861-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入