語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Arbeitsbuch Höhere Mathematik in Rezepten
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Arbeitsbuch Höhere Mathematik in Rezepten/ von Christian Karpfinger.
作者:
Karpfinger, Christian.
面頁冊數:
XX, 756 S. 91 Abb., 31 Abb. in Farbe.online resource. :
Contained By:
Springer Nature eBook
標題:
Differential Equations. -
電子資源:
https://doi.org/10.1007/978-3-662-64345-7
ISBN:
9783662643457
Arbeitsbuch Höhere Mathematik in Rezepten
Karpfinger, Christian.
Arbeitsbuch Höhere Mathematik in Rezepten
[electronic resource] /von Christian Karpfinger. - 4th ed. 2022. - XX, 756 S. 91 Abb., 31 Abb. in Farbe.online resource.
Vorwort -- 1 Sprechweisen, Symbole und Mengen -- 2 Die natürlichen, ganzen und rationalen Zahlen -- 3 Die reellen Zahlen -- 4 Maschinenzahlen -- 5 Polynome -- 6 Trigonometrische Funktionen -- 7 Komplexe Zahlen - Kartesische Koordinaten -- 8 Komplexe Zahlen – Polarkoordinaten -- 9 Lineare Gleichungssysteme -- 10 Rechnen mit Matrizen -- 11 LR-Zerlegung einer Matrix -- 12 Die Determinante -- 13 Vektorräume -- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit -- 15 Basen von Vektorräumen -- 16 Orthogonalität I -- 17 Orthogonalität II -- 18 Das lineare Ausgleichsproblem -- 19 Die QR-Zerlegung einer Matrix -- 20 Folgen -- 21 Berechnung von Grenzwerten von Folgen -- 22 Reihen -- 23 Abbildungen -- 24 Potenzreihen -- 25 Grenzwerte und Stetigkeit -- 26 Differentiation -- 27 Anwendungen der Differentialrechnung I -- 28 Anwendungen der Differentialrechnung II -- 29 Polynom- und Splineinterpolation -- 30 Integration I -- 31 Integration II -- 32 Uneigentliche Integrale -- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung -- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten -- 35 Einige besondere Typen von Differentialgleichungen -- 36 Numerik gewöhnlicher Differentialgleichungen I -- 37 Lineare Abbildungen und Darstellungsmatrizen -- 38 Basistransformation -- 39 Diagonalisierung - Eigenwerte und Eigenvektoren -- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren -- 41 Quadriken -- 42 Schurzerlegung und Singulärwertzerlegung -- 43 Die Jordannormalform I -- 44 Die Jordannormalform II -- 45 Definitheit und Matrixnormen -- 46 Funktionen mehrerer Veränderlicher -- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix -- 48 Anwendungen der partiellen Ableitungen -- 49 Extremwertbestimmung -- 50 Extremwertbestimmung unter Nebenbedingungen -- 51 Totale Differentiation, Differentialoperatoren -- 52 Implizite Funktionen -- 53 Koordinatentransformationen -- 54 Kurven I -- 55 Kurven II -- 56 Kurvenintegrale -- 57 Gradientenfelder -- 58 Bereichsintegrale -- 59 Die Transformationsformel -- 60 Flächen und Flächenintegrale -- 61 Integralsätze I -- 62 Integralsätze II -- 63 Allgemeines zu Differentialgleichungen -- 64 Die exakte Differentialgleichung -- 65 Lineare Differentialgleichungssysteme I -- 66 Lineare Differentialgleichungssysteme II -- 67 Lineare Differentialgleichungssysteme II -- 68 Randwertprobleme -- 69 Grundbegriffe der Numerik -- 70 Fixpunktiteration -- 71 Iterative Verfahren für lineare Gleichungssysteme -- 72 Optimierung -- 73 Numerik gewöhnlicher Differentialgleichungen II -- 74 Fourierreihen - Berechnung der Fourierkoeffzienten -- 75 Fourierreihen - Hintergründe, Sätze und Anwendung -- 76 Fouriertransformation I -- 77 Fouriertransformation II -- 78 Diskrete Fouriertransformation -- 79 Die Laplacetransformation -- 80 Holomorphe Funktionen -- 81 Komplexe Integration -- 82 Laurentreihen -- 83 Der Residuenkalkül -- 84 Konforme Abbildungen -- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem -- 86 Partielle Differentialgleichungen 1. Ordnung -- 87 Partielle Differentialgleichungen 2. Ordnung – Allgemeines -- 88 Die Laplace- bzw. Poissongleichung -- 89 Die Wärmeleitungsgleichung -- 90 Die Wellengleichung -- 91 Lösen von pDGLen mit Fourier- und Laplacetransformation -- Index.
In diesem Buch stellen wir die mehr als 500 Aufgaben des Lehrbuchs Höhere Mathematik in Rezepten (vierte Auflage) des gleichen Autors mit Lösungen zusammen. Sie haben die Gelegenheit, die Rezepte des Rezeptebuchs zum Lösen typischer Aufgabenstellungen der Höheren Mathematik bei vielen Beispielen anzuwenden. Wir bieten auch zahlreiche Aufgaben zum Nachdenken und Knobeln an, die das tiefere Verständnis für Mathematik fördern. Nicht zuletzt findet man auch einige Programmieraufgaben, mit deren Lösungen Sie in der Lage sind, zahlreiche Aufgabenstellungen zu bearbeiten, mit denen Sie im Laufe Ihres Studiums bzw. Berufslebens konfrontiert sein werden. Behandelt werden alle Themen, die üblicherweise in vier Semestern Höhere Mathematik unterrichtet werden. Im Einzelnen sind dies Analysis einer und mehrerer Variabler, lineare Algebra, Vektoranalysis, Differenzialgleichungen (gewöhnliche und partielle), Integraltransformationen und Funktionentheorie. In der vorliegenden vierten Auflage des Arbeitsbuchs sind die Aufgaben und Lösungen an die vierte Auflage des Hauptwerks angepasst. Der Autor Prof. Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
ISBN: 9783662643457
Standard No.: 10.1007/978-3-662-64345-7doiSubjects--Topical Terms:
681826
Differential Equations.
LC Class. No.: QA299.6-433
Dewey Class. No.: 515
Arbeitsbuch Höhere Mathematik in Rezepten
LDR
:05751nam a22003495i 4500
001
1089767
003
DE-He213
005
20220307204611.0
007
cr nn 008mamaa
008
221228s2022 gw | s |||| 0|ger d
020
$a
9783662643457
$9
978-3-662-64345-7
024
7
$a
10.1007/978-3-662-64345-7
$2
doi
035
$a
978-3-662-64345-7
050
4
$a
QA299.6-433
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
515
$2
23
100
1
$a
Karpfinger, Christian.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1262856
245
1 0
$a
Arbeitsbuch Höhere Mathematik in Rezepten
$h
[electronic resource] /
$c
von Christian Karpfinger.
250
$a
4th ed. 2022.
264
1
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer Spektrum,
$c
2022.
300
$a
XX, 756 S. 91 Abb., 31 Abb. in Farbe.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Vorwort -- 1 Sprechweisen, Symbole und Mengen -- 2 Die natürlichen, ganzen und rationalen Zahlen -- 3 Die reellen Zahlen -- 4 Maschinenzahlen -- 5 Polynome -- 6 Trigonometrische Funktionen -- 7 Komplexe Zahlen - Kartesische Koordinaten -- 8 Komplexe Zahlen – Polarkoordinaten -- 9 Lineare Gleichungssysteme -- 10 Rechnen mit Matrizen -- 11 LR-Zerlegung einer Matrix -- 12 Die Determinante -- 13 Vektorräume -- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit -- 15 Basen von Vektorräumen -- 16 Orthogonalität I -- 17 Orthogonalität II -- 18 Das lineare Ausgleichsproblem -- 19 Die QR-Zerlegung einer Matrix -- 20 Folgen -- 21 Berechnung von Grenzwerten von Folgen -- 22 Reihen -- 23 Abbildungen -- 24 Potenzreihen -- 25 Grenzwerte und Stetigkeit -- 26 Differentiation -- 27 Anwendungen der Differentialrechnung I -- 28 Anwendungen der Differentialrechnung II -- 29 Polynom- und Splineinterpolation -- 30 Integration I -- 31 Integration II -- 32 Uneigentliche Integrale -- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung -- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten -- 35 Einige besondere Typen von Differentialgleichungen -- 36 Numerik gewöhnlicher Differentialgleichungen I -- 37 Lineare Abbildungen und Darstellungsmatrizen -- 38 Basistransformation -- 39 Diagonalisierung - Eigenwerte und Eigenvektoren -- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren -- 41 Quadriken -- 42 Schurzerlegung und Singulärwertzerlegung -- 43 Die Jordannormalform I -- 44 Die Jordannormalform II -- 45 Definitheit und Matrixnormen -- 46 Funktionen mehrerer Veränderlicher -- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix -- 48 Anwendungen der partiellen Ableitungen -- 49 Extremwertbestimmung -- 50 Extremwertbestimmung unter Nebenbedingungen -- 51 Totale Differentiation, Differentialoperatoren -- 52 Implizite Funktionen -- 53 Koordinatentransformationen -- 54 Kurven I -- 55 Kurven II -- 56 Kurvenintegrale -- 57 Gradientenfelder -- 58 Bereichsintegrale -- 59 Die Transformationsformel -- 60 Flächen und Flächenintegrale -- 61 Integralsätze I -- 62 Integralsätze II -- 63 Allgemeines zu Differentialgleichungen -- 64 Die exakte Differentialgleichung -- 65 Lineare Differentialgleichungssysteme I -- 66 Lineare Differentialgleichungssysteme II -- 67 Lineare Differentialgleichungssysteme II -- 68 Randwertprobleme -- 69 Grundbegriffe der Numerik -- 70 Fixpunktiteration -- 71 Iterative Verfahren für lineare Gleichungssysteme -- 72 Optimierung -- 73 Numerik gewöhnlicher Differentialgleichungen II -- 74 Fourierreihen - Berechnung der Fourierkoeffzienten -- 75 Fourierreihen - Hintergründe, Sätze und Anwendung -- 76 Fouriertransformation I -- 77 Fouriertransformation II -- 78 Diskrete Fouriertransformation -- 79 Die Laplacetransformation -- 80 Holomorphe Funktionen -- 81 Komplexe Integration -- 82 Laurentreihen -- 83 Der Residuenkalkül -- 84 Konforme Abbildungen -- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem -- 86 Partielle Differentialgleichungen 1. Ordnung -- 87 Partielle Differentialgleichungen 2. Ordnung – Allgemeines -- 88 Die Laplace- bzw. Poissongleichung -- 89 Die Wärmeleitungsgleichung -- 90 Die Wellengleichung -- 91 Lösen von pDGLen mit Fourier- und Laplacetransformation -- Index.
520
$a
In diesem Buch stellen wir die mehr als 500 Aufgaben des Lehrbuchs Höhere Mathematik in Rezepten (vierte Auflage) des gleichen Autors mit Lösungen zusammen. Sie haben die Gelegenheit, die Rezepte des Rezeptebuchs zum Lösen typischer Aufgabenstellungen der Höheren Mathematik bei vielen Beispielen anzuwenden. Wir bieten auch zahlreiche Aufgaben zum Nachdenken und Knobeln an, die das tiefere Verständnis für Mathematik fördern. Nicht zuletzt findet man auch einige Programmieraufgaben, mit deren Lösungen Sie in der Lage sind, zahlreiche Aufgabenstellungen zu bearbeiten, mit denen Sie im Laufe Ihres Studiums bzw. Berufslebens konfrontiert sein werden. Behandelt werden alle Themen, die üblicherweise in vier Semestern Höhere Mathematik unterrichtet werden. Im Einzelnen sind dies Analysis einer und mehrerer Variabler, lineare Algebra, Vektoranalysis, Differenzialgleichungen (gewöhnliche und partielle), Integraltransformationen und Funktionentheorie. In der vorliegenden vierten Auflage des Arbeitsbuchs sind die Aufgaben und Lösungen an die vierte Auflage des Hauptwerks angepasst. Der Autor Prof. Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
650
2 4
$a
Differential Equations.
$3
681826
650
2 4
$a
Linear Algebra.
$3
1207620
650
1 4
$a
Analysis.
$3
669490
650
0
$a
Differential equations.
$3
527664
650
0
$a
Algebras, Linear.
$3
528115
650
0
$a
Mathematical analysis.
$3
527926
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783662643440
856
4 0
$u
https://doi.org/10.1007/978-3-662-64345-7
912
$a
ZDB-2-SNA
950
$a
Life Science and Basic Disciplines (German Language) (SpringerNature-11777)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入