語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Recent Advancements in Multi-View Data Analytics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Recent Advancements in Multi-View Data Analytics/ edited by Witold Pedrycz, Shyi-Ming Chen.
其他作者:
Chen, Shyi-Ming.
面頁冊數:
VIII, 342 p. 74 illus., 47 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-95239-6
ISBN:
9783030952396
Recent Advancements in Multi-View Data Analytics
Recent Advancements in Multi-View Data Analytics
[electronic resource] /edited by Witold Pedrycz, Shyi-Ming Chen. - 1st ed. 2022. - VIII, 342 p. 74 illus., 47 illus. in color.online resource. - Studies in Big Data,1062197-6511 ;. - Studies in Big Data,8.
The Psychology of Conflictive Uncertainty -- How Multi-View Techniques Can Help in Processing Uncertainty -- Multi-View Clustering and Multi-View Models -- Rethinking Collaborative Clustering: A Practical and Theoretical Study within the Realm of Multi-View Clustering -- An Optimal Transport Framework for Collaborative Multi-View Clustering -- Data Anonymization through Multi-Modular Clustering.
This book provides timely studies on multi-view facets of data analytics by covering recent trends in processing and reasoning about data originating from an array of local sources. A multi-view nature of data analytics is encountered when working with a variety of real-world scenarios including clustering, consensus building in decision processes, computer vision, knowledge representation, big data, data streaming, among others. The chapters demonstrate recent pursuits in the methodology, theory, advanced algorithms, and applications of multi-view data analytics and bring new perspectives of data interpretation. The timely book will appeal to a broad readership including both researchers and practitioners interested in gaining exposure to the rapidly growing trend of multi-view data analytics and intelligent systems.
ISBN: 9783030952396
Standard No.: 10.1007/978-3-030-95239-6doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: TA345-345.5
Dewey Class. No.: 620.00285
Recent Advancements in Multi-View Data Analytics
LDR
:02688nam a22004095i 4500
001
1090184
003
DE-He213
005
20220520121354.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030952396
$9
978-3-030-95239-6
024
7
$a
10.1007/978-3-030-95239-6
$2
doi
035
$a
978-3-030-95239-6
050
4
$a
TA345-345.5
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
620.00285
$2
23
245
1 0
$a
Recent Advancements in Multi-View Data Analytics
$h
[electronic resource] /
$c
edited by Witold Pedrycz, Shyi-Ming Chen.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
VIII, 342 p. 74 illus., 47 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Big Data,
$x
2197-6511 ;
$v
106
505
0
$a
The Psychology of Conflictive Uncertainty -- How Multi-View Techniques Can Help in Processing Uncertainty -- Multi-View Clustering and Multi-View Models -- Rethinking Collaborative Clustering: A Practical and Theoretical Study within the Realm of Multi-View Clustering -- An Optimal Transport Framework for Collaborative Multi-View Clustering -- Data Anonymization through Multi-Modular Clustering.
520
$a
This book provides timely studies on multi-view facets of data analytics by covering recent trends in processing and reasoning about data originating from an array of local sources. A multi-view nature of data analytics is encountered when working with a variety of real-world scenarios including clustering, consensus building in decision processes, computer vision, knowledge representation, big data, data streaming, among others. The chapters demonstrate recent pursuits in the methodology, theory, advanced algorithms, and applications of multi-view data analytics and bring new perspectives of data interpretation. The timely book will appeal to a broad readership including both researchers and practitioners interested in gaining exposure to the rapidly growing trend of multi-view data analytics and intelligent systems.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Computational Intelligence.
$3
768837
650
1 4
$a
Data Engineering.
$3
1226308
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Engineering—Data processing.
$3
1297966
700
1
$a
Chen, Shyi-Ming.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
785891
700
1
$a
Pedrycz, Witold.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
678017
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030952389
776
0 8
$i
Printed edition:
$z
9783030952402
776
0 8
$i
Printed edition:
$z
9783030952419
830
0
$a
Studies in Big Data,
$x
2197-6503 ;
$v
8
$3
1256918
856
4 0
$u
https://doi.org/10.1007/978-3-030-95239-6
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入