語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Monte Carlo and Quasi-Monte Carlo Methods = MCQMC 2020, Oxford, United Kingdom, August 10–14 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Monte Carlo and Quasi-Monte Carlo Methods/ edited by Alexander Keller.
其他題名:
MCQMC 2020, Oxford, United Kingdom, August 10–14 /
其他作者:
Keller, Alexander.
面頁冊數:
XVI, 311 p. 69 illus., 53 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Optimization. -
電子資源:
https://doi.org/10.1007/978-3-030-98319-2
ISBN:
9783030983192
Monte Carlo and Quasi-Monte Carlo Methods = MCQMC 2020, Oxford, United Kingdom, August 10–14 /
Monte Carlo and Quasi-Monte Carlo Methods
MCQMC 2020, Oxford, United Kingdom, August 10–14 /[electronic resource] :edited by Alexander Keller. - 1st ed. 2022. - XVI, 311 p. 69 illus., 53 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,3872194-1017 ;. - Springer Proceedings in Mathematics & Statistics,125.
The MCQMC Conference Series -- The MCQMC Conference Series: P. L’Ecuyer and F. Puchhammer, Density Estimation by Monte Carlo and Quasi-Monte Carlo -- Sou-Cheng T. Choi, Fred J. Hickernell, Rathinavel Jagadeeswaran, Michael J. McCourt, and Aleksei G. Sorokin, Quasi-Monte Carlo Software -- Part II Regular Talks: P. L’Ecuyer, P. Marion, M. Godin, and F. Puchhamme, A Tool for Custom Construction of QMC and RQMC Point Sets -- Art B. Owen, On Dropping the first Sobol’ Point -- C. Lemieux and J. Wiart, On the Distribution of Scrambled Nets over Unanchored Boxes -- S. Heinrich, Lower Bounds for the Number of Random Bits in Monte Carlo Algorithms -- N. Binder, S. Fricke, and A. Keller, Massively Parallel Path Space Filtering -- M. Hird, S. Livingstone, and G. Zanella, A fresh Take on ‘Barker Dynamics’ for MCMC -- P. Blondeel, P. Robbe, S. François, G. Lombaert and S. Vandewalle, On the Selection of Random Field Evaluation Points in the p-MLQMC Method -- S. Si, Chris. J. Oates, Andrew B. Duncan, L. Carin, and François-Xavier Briol, Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization -- Andrei S. Cozma and C. Reisinger, Simulation of Conditional Expectations under fast mean-reverting Stochastic Volatility Models -- M. Huber, Generating from the Strauss Process using stitching -- R. Nasdala and D. Potts, A Note on Transformed Fourier Systems for the Approximation of Non-Periodic Signals -- M. Hofert, A. Prasad, and Mu Zhu, Applications of Multivariate Quasi-Random Sampling with Neural Networks -- A. Keller and Matthijs Van keirsbilck, Artificial Neural Networks generated by Low Discrepancy Sequences.
This volume presents the revised papers of the 14th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2020, which took place online during August 10-14, 2020. This book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in statistics, machine learning, finance, and computer graphics, offering information on the latest developments in Monte Carlo and quasi-Monte Carlo methods and their randomized versions.
ISBN: 9783030983192
Standard No.: 10.1007/978-3-030-98319-2doiSubjects--Topical Terms:
669174
Optimization.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Monte Carlo and Quasi-Monte Carlo Methods = MCQMC 2020, Oxford, United Kingdom, August 10–14 /
LDR
:03715nam a22004095i 4500
001
1090239
003
DE-He213
005
20220520082856.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030983192
$9
978-3-030-98319-2
024
7
$a
10.1007/978-3-030-98319-2
$2
doi
035
$a
978-3-030-98319-2
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
245
1 0
$a
Monte Carlo and Quasi-Monte Carlo Methods
$h
[electronic resource] :
$b
MCQMC 2020, Oxford, United Kingdom, August 10–14 /
$c
edited by Alexander Keller.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XVI, 311 p. 69 illus., 53 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1017 ;
$v
387
505
0
$a
The MCQMC Conference Series -- The MCQMC Conference Series: P. L’Ecuyer and F. Puchhammer, Density Estimation by Monte Carlo and Quasi-Monte Carlo -- Sou-Cheng T. Choi, Fred J. Hickernell, Rathinavel Jagadeeswaran, Michael J. McCourt, and Aleksei G. Sorokin, Quasi-Monte Carlo Software -- Part II Regular Talks: P. L’Ecuyer, P. Marion, M. Godin, and F. Puchhamme, A Tool for Custom Construction of QMC and RQMC Point Sets -- Art B. Owen, On Dropping the first Sobol’ Point -- C. Lemieux and J. Wiart, On the Distribution of Scrambled Nets over Unanchored Boxes -- S. Heinrich, Lower Bounds for the Number of Random Bits in Monte Carlo Algorithms -- N. Binder, S. Fricke, and A. Keller, Massively Parallel Path Space Filtering -- M. Hird, S. Livingstone, and G. Zanella, A fresh Take on ‘Barker Dynamics’ for MCMC -- P. Blondeel, P. Robbe, S. François, G. Lombaert and S. Vandewalle, On the Selection of Random Field Evaluation Points in the p-MLQMC Method -- S. Si, Chris. J. Oates, Andrew B. Duncan, L. Carin, and François-Xavier Briol, Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization -- Andrei S. Cozma and C. Reisinger, Simulation of Conditional Expectations under fast mean-reverting Stochastic Volatility Models -- M. Huber, Generating from the Strauss Process using stitching -- R. Nasdala and D. Potts, A Note on Transformed Fourier Systems for the Approximation of Non-Periodic Signals -- M. Hofert, A. Prasad, and Mu Zhu, Applications of Multivariate Quasi-Random Sampling with Neural Networks -- A. Keller and Matthijs Van keirsbilck, Artificial Neural Networks generated by Low Discrepancy Sequences.
520
$a
This volume presents the revised papers of the 14th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2020, which took place online during August 10-14, 2020. This book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in statistics, machine learning, finance, and computer graphics, offering information on the latest developments in Monte Carlo and quasi-Monte Carlo methods and their randomized versions.
650
2 4
$a
Optimization.
$3
669174
650
2 4
$a
Functional Analysis.
$3
672166
650
2 4
$a
Number Theory.
$3
672023
650
1 4
$a
Statistics.
$3
556824
650
0
$a
Mathematical optimization.
$3
527675
650
0
$a
Functional analysis.
$3
527706
650
0
$a
Number theory.
$3
527883
650
0
$a
Statistics .
$3
1253516
700
1
$a
Keller, Alexander.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1392655
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030983185
776
0 8
$i
Printed edition:
$z
9783030983208
776
0 8
$i
Printed edition:
$z
9783030983215
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-98319-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入