語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Handbook of Big Data Analytics and Forensics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Handbook of Big Data Analytics and Forensics/ edited by Kim-Kwang Raymond Choo, Ali Dehghantanha.
其他作者:
Dehghantanha, Ali.
面頁冊數:
VIII, 287 p. 88 illus., 77 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer Crime. -
電子資源:
https://doi.org/10.1007/978-3-030-74753-4
ISBN:
9783030747534
Handbook of Big Data Analytics and Forensics
Handbook of Big Data Analytics and Forensics
[electronic resource] /edited by Kim-Kwang Raymond Choo, Ali Dehghantanha. - 1st ed. 2022. - VIII, 287 p. 88 illus., 77 illus. in color.online resource.
1. Big data analytics and forensics: an overview -- 2. Lot privacy, security and forensics challenges: an unmanned aerial vehicle (uav) case study -- 3. Detection of enumeration attacks in cloud environments using infrastructure log data -- 4 -- Cyber threat attribution with multi-view heuristic analysis -- 5. Security of industrial cyberspace: fair clustering with linear time approximation -- 6. Adaptive neural trees for attack detection in cyber physical systems -- 7. Evaluating performance of scalable fair clustering machine learning techniques in detecting cyber-attacks in industrial control systems -- 8. Fuzzy bayesian learning for cyber threat hunting in industrial control systems -- 9. Cyber-attack detection in cyber-physical systems using supervised machine learning -- 10. Evaluation of scalable fair clustering machine learning methods for threat hunting in cyber-physical systems -- 11. Evaluation of supervised and unsupervised machine learning classifiers for mac os malware detection -- 12. Evaluation of machine learning algorithms on internet of things (iot) malware opcodes -- 13. Mac os x malware detection with supervised machine learning algorithms -- 14. Machine learning for osx malware detection -- 15. Hybrid analysis on credit card fraud detection using machine learning techniques -- 16. Mapping ckc model through nlp modelling for apt groups reports -- 17. Ransomware threat detection: a deep learning approach -- 18. Scalable fair clustering algorithm for internet of things malware classification.
This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter. The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook also evaluates the performance of supervised machine learning methods in identifying cyberattacks against CPS. The performance of a scalable clustering algorithm for CPS’s cyber threat hunting and the usefulness of machine learning algorithms for MacOS malware detection are respectively evaluated. This handbook continues with evaluating the performance of various machine learning techniques to detect the Internet of Things malware. The authors demonstrate how MacOSX cyberattacks can be detected using state-of-the-art machine learning models. In order to identify credit card frauds, the fifteenth chapter introduces a hybrid model. In the sixteenth chapter, the editors propose a model that leverages natural language processing techniques for generating a mapping between APT-related reports and cyber kill chain. A deep learning-based approach to detect ransomware is introduced, as well as a proposed clustering approach to detect IoT malware in the last two chapters. This handbook primarily targets professionals and scientists working in Big Data, Digital Forensics, Machine Learning, Cyber Security Cyber Threat Analytics and Cyber Threat Hunting as a reference book. Advanced level-students and researchers studying and working in Computer systems, Computer networks and Artificial intelligence will also find this reference useful.
ISBN: 9783030747534
Standard No.: 10.1007/978-3-030-74753-4doiSubjects--Topical Terms:
1226852
Computer Crime.
LC Class. No.: TK5105.59
Dewey Class. No.: 005.8
Handbook of Big Data Analytics and Forensics
LDR
:05449nam a22003975i 4500
001
1091416
003
DE-He213
005
20220114085230.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030747534
$9
978-3-030-74753-4
024
7
$a
10.1007/978-3-030-74753-4
$2
doi
035
$a
978-3-030-74753-4
050
4
$a
TK5105.59
072
7
$a
UTN
$2
bicssc
072
7
$a
COM043050
$2
bisacsh
072
7
$a
UTN
$2
thema
082
0 4
$a
005.8
$2
23
245
1 0
$a
Handbook of Big Data Analytics and Forensics
$h
[electronic resource] /
$c
edited by Kim-Kwang Raymond Choo, Ali Dehghantanha.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
VIII, 287 p. 88 illus., 77 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Big data analytics and forensics: an overview -- 2. Lot privacy, security and forensics challenges: an unmanned aerial vehicle (uav) case study -- 3. Detection of enumeration attacks in cloud environments using infrastructure log data -- 4 -- Cyber threat attribution with multi-view heuristic analysis -- 5. Security of industrial cyberspace: fair clustering with linear time approximation -- 6. Adaptive neural trees for attack detection in cyber physical systems -- 7. Evaluating performance of scalable fair clustering machine learning techniques in detecting cyber-attacks in industrial control systems -- 8. Fuzzy bayesian learning for cyber threat hunting in industrial control systems -- 9. Cyber-attack detection in cyber-physical systems using supervised machine learning -- 10. Evaluation of scalable fair clustering machine learning methods for threat hunting in cyber-physical systems -- 11. Evaluation of supervised and unsupervised machine learning classifiers for mac os malware detection -- 12. Evaluation of machine learning algorithms on internet of things (iot) malware opcodes -- 13. Mac os x malware detection with supervised machine learning algorithms -- 14. Machine learning for osx malware detection -- 15. Hybrid analysis on credit card fraud detection using machine learning techniques -- 16. Mapping ckc model through nlp modelling for apt groups reports -- 17. Ransomware threat detection: a deep learning approach -- 18. Scalable fair clustering algorithm for internet of things malware classification.
520
$a
This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter. The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook also evaluates the performance of supervised machine learning methods in identifying cyberattacks against CPS. The performance of a scalable clustering algorithm for CPS’s cyber threat hunting and the usefulness of machine learning algorithms for MacOS malware detection are respectively evaluated. This handbook continues with evaluating the performance of various machine learning techniques to detect the Internet of Things malware. The authors demonstrate how MacOSX cyberattacks can be detected using state-of-the-art machine learning models. In order to identify credit card frauds, the fifteenth chapter introduces a hybrid model. In the sixteenth chapter, the editors propose a model that leverages natural language processing techniques for generating a mapping between APT-related reports and cyber kill chain. A deep learning-based approach to detect ransomware is introduced, as well as a proposed clustering approach to detect IoT malware in the last two chapters. This handbook primarily targets professionals and scientists working in Big Data, Digital Forensics, Machine Learning, Cyber Security Cyber Threat Analytics and Cyber Threat Hunting as a reference book. Advanced level-students and researchers studying and working in Computer systems, Computer networks and Artificial intelligence will also find this reference useful.
650
2 4
$a
Computer Crime.
$3
1226852
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Big Data.
$3
1017136
650
1 4
$a
Mobile and Network Security.
$3
1211619
650
0
$a
Computer crimes.
$3
564161
650
0
$a
Machine learning.
$3
561253
650
0
$a
Big data.
$3
981821
650
0
$a
Computer networks—Security measures.
$3
1366173
700
1
$a
Dehghantanha, Ali.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1203521
700
1
$a
Choo, Kim-Kwang Raymond.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
895890
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030747527
776
0 8
$i
Printed edition:
$z
9783030747541
776
0 8
$i
Printed edition:
$z
9783030747558
856
4 0
$u
https://doi.org/10.1007/978-3-030-74753-4
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入