語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep Learning Techniques for IoT Security and Privacy
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep Learning Techniques for IoT Security and Privacy/ by Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding.
作者:
Abdel-Basset, Mohamed.
其他作者:
Ding, Weiping.
面頁冊數:
XXI, 257 p. 71 illus., 69 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-89025-4
ISBN:
9783030890254
Deep Learning Techniques for IoT Security and Privacy
Abdel-Basset, Mohamed.
Deep Learning Techniques for IoT Security and Privacy
[electronic resource] /by Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding. - 1st ed. 2022. - XXI, 257 p. 71 illus., 69 illus. in color.online resource. - Studies in Computational Intelligence,9971860-9503 ;. - Studies in Computational Intelligence,564.
Chapter 1, Conceptualization of Security, Forensics, and Privacy of Internet of Things -- Chapter 2, Internet of Things, Preliminaries and Foundations -- Chapter 3, Internet of Things Security Requirements, Threats, Countermeasures -- Chapter 4, Digital Forensics in Internet of Things -- Chapter 5, Supervised Deep Learning for Secure Internet of Things -- Chapter 6, Unsupervised Deep Learning for Secure Internet of Things -- Chapter 7, Semi-supervised Deep Learning for Secure Internet of Things -- Chapter 8, Reinforcement Learning for Secure Internet of Things -- Chapter 9, Federated Learning for Privacy-Preserving Internet of Things -- Chapter 10, Challenges, Opportunities, and Future Prospects.
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
ISBN: 9783030890254
Standard No.: 10.1007/978-3-030-89025-4doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: TA345-345.5
Dewey Class. No.: 620.00285
Deep Learning Techniques for IoT Security and Privacy
LDR
:02689nam a22004095i 4500
001
1091533
003
DE-He213
005
20221012085209.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030890254
$9
978-3-030-89025-4
024
7
$a
10.1007/978-3-030-89025-4
$2
doi
035
$a
978-3-030-89025-4
050
4
$a
TA345-345.5
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
620.00285
$2
23
100
1
$a
Abdel-Basset, Mohamed.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1352425
245
1 0
$a
Deep Learning Techniques for IoT Security and Privacy
$h
[electronic resource] /
$c
by Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XXI, 257 p. 71 illus., 69 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-9503 ;
$v
997
505
0
$a
Chapter 1, Conceptualization of Security, Forensics, and Privacy of Internet of Things -- Chapter 2, Internet of Things, Preliminaries and Foundations -- Chapter 3, Internet of Things Security Requirements, Threats, Countermeasures -- Chapter 4, Digital Forensics in Internet of Things -- Chapter 5, Supervised Deep Learning for Secure Internet of Things -- Chapter 6, Unsupervised Deep Learning for Secure Internet of Things -- Chapter 7, Semi-supervised Deep Learning for Secure Internet of Things -- Chapter 8, Reinforcement Learning for Secure Internet of Things -- Chapter 9, Federated Learning for Privacy-Preserving Internet of Things -- Chapter 10, Challenges, Opportunities, and Future Prospects.
520
$a
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Computational Intelligence.
$3
768837
650
1 4
$a
Data Engineering.
$3
1226308
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Engineering—Data processing.
$3
1297966
700
1
$a
Ding, Weiping.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1398917
700
1
$a
Hawash, Hossam.
$e
author.
$1
https://orcid.org/0000-0001-9925-3232
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1399132
700
1
$a
Moustafa, Nour.
$e
editor.
$1
https://orcid.org/0000-0001-6127-9349
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1326485
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030890247
776
0 8
$i
Printed edition:
$z
9783030890261
776
0 8
$i
Printed edition:
$z
9783030890278
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-89025-4
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入