語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematics of Open Fluid Systems
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematics of Open Fluid Systems/ by Eduard Feireisl, Antonin Novotný.
作者:
Feireisl, Eduard.
其他作者:
Novotný, Antonin.
面頁冊數:
XXVII, 284 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Continuum Mechanics. -
電子資源:
https://doi.org/10.1007/978-3-030-94793-4
ISBN:
9783030947934
Mathematics of Open Fluid Systems
Feireisl, Eduard.
Mathematics of Open Fluid Systems
[electronic resource] /by Eduard Feireisl, Antonin Novotný. - 1st ed. 2022. - XXVII, 284 p.online resource. - Nečas Center Series,2523-3351. - Nečas Center Series,.
Part I: Modelling -- Mathematical Models of Fluids in Continuum Mechanics -- Open vs. Closed Systems -- Part II: Analysis -- Generalized Solutions -- Constitutive Theory and Weak-Strong Uniqueness Revisited.-Existence Theory, Basic Approximation Scheme -- Vanishing Galerkin Limit and Domain Approximation.-Vanishing Artificial Diffusion Limit -- Vanishing Artificial Pressure Limit -- Existence Theory - Main Results.-Part III: Qualitative Properties -- Long Time Behavior -- Statistical Solutions, Ergodic Hypothesis, and Turbulence -- Systems with Prescribed Boundary Temperature.
The goal of this monograph is to develop a mathematical theory of open fluid systems in the framework of continuum thermodynamics. Part I discusses the difference between open and closed fluid systems and introduces the Navier-Stokes-Fourier system as the mathematical model of a fluid in motion that will be used throughout the text. A class of generalized solutions to the Navier-Stokes-Fourier system is considered in Part II in order to show existence of global-in-time solutions for any finite energy initial data, as well as to establish the weak-strong uniqueness principle. Finally, Part III addresses questions of asymptotic compactness and global boundedness of trajectories and briefly considers the statistical theory of turbulence and the validity of the ergodic hypothesis.
ISBN: 9783030947934
Standard No.: 10.1007/978-3-030-94793-4doiSubjects--Topical Terms:
1366663
Continuum Mechanics.
LC Class. No.: QA319-329.9
Dewey Class. No.: 515.7
Mathematics of Open Fluid Systems
LDR
:02709nam a22003975i 4500
001
1091892
003
DE-He213
005
20220401220201.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030947934
$9
978-3-030-94793-4
024
7
$a
10.1007/978-3-030-94793-4
$2
doi
035
$a
978-3-030-94793-4
050
4
$a
QA319-329.9
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.7
$2
23
100
1
$a
Feireisl, Eduard.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
897661
245
1 0
$a
Mathematics of Open Fluid Systems
$h
[electronic resource] /
$c
by Eduard Feireisl, Antonin Novotný.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2022.
300
$a
XXVII, 284 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Nečas Center Series,
$x
2523-3351
505
0
$a
Part I: Modelling -- Mathematical Models of Fluids in Continuum Mechanics -- Open vs. Closed Systems -- Part II: Analysis -- Generalized Solutions -- Constitutive Theory and Weak-Strong Uniqueness Revisited.-Existence Theory, Basic Approximation Scheme -- Vanishing Galerkin Limit and Domain Approximation.-Vanishing Artificial Diffusion Limit -- Vanishing Artificial Pressure Limit -- Existence Theory - Main Results.-Part III: Qualitative Properties -- Long Time Behavior -- Statistical Solutions, Ergodic Hypothesis, and Turbulence -- Systems with Prescribed Boundary Temperature.
520
$a
The goal of this monograph is to develop a mathematical theory of open fluid systems in the framework of continuum thermodynamics. Part I discusses the difference between open and closed fluid systems and introduces the Navier-Stokes-Fourier system as the mathematical model of a fluid in motion that will be used throughout the text. A class of generalized solutions to the Navier-Stokes-Fourier system is considered in Part II in order to show existence of global-in-time solutions for any finite energy initial data, as well as to establish the weak-strong uniqueness principle. Finally, Part III addresses questions of asymptotic compactness and global boundedness of trajectories and briefly considers the statistical theory of turbulence and the validity of the ergodic hypothesis.
650
2 4
$a
Continuum Mechanics.
$3
1366663
650
2 4
$a
Mathematical Modeling and Industrial Mathematics.
$3
669172
650
2 4
$a
Differential Equations.
$3
681826
650
1 4
$a
Functional Analysis.
$3
672166
650
0
$a
Continuum mechanics.
$3
527691
650
0
$a
Mathematical models.
$3
527886
650
0
$a
Differential equations.
$3
527664
650
0
$a
Functional analysis.
$3
527706
700
1
$a
Novotný, Antonin.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1399561
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030947927
776
0 8
$i
Printed edition:
$z
9783030947941
830
0
$a
Nečas Center Series,
$x
2523-3343
$3
1280950
856
4 0
$u
https://doi.org/10.1007/978-3-030-94793-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入