語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to Differential Geometry
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Introduction to Differential Geometry/ by Joel W. Robbin, Dietmar A. Salamon.
作者:
Robbin, Joel W.
其他作者:
Salamon, Dietmar A.
面頁冊數:
XIII, 418 p. 45 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Differential Geometry. -
電子資源:
https://doi.org/10.1007/978-3-662-64340-2
ISBN:
9783662643402
Introduction to Differential Geometry
Robbin, Joel W.
Introduction to Differential Geometry
[electronic resource] /by Joel W. Robbin, Dietmar A. Salamon. - 1st ed. 2022. - XIII, 418 p. 45 illus. in color.online resource. - Springer Studium Mathematik (Master),2509-9329. - Springer Studium Mathematik (Master),.
1 What is Differential Geometry? -- 2 Foundations -- 3 The Levi-Civita Connection -- 4 Geodesics -- 5 Curvature -- 6 Geometry and Topology -- 7 Topics in Geometry -- Appendix.
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory. The Authors Joel W. Robbin, Professor emeritus, University of Wisconsin-Madison, Department of Mathematics. Dietmar A. Salamon, Professor emeritus, Eidgenössische Technische Hochschule Zürich (ETHZ), Departement Mathematik.
ISBN: 9783662643402
Standard No.: 10.1007/978-3-662-64340-2doiSubjects--Topical Terms:
671118
Differential Geometry.
LC Class. No.: QA641-670
Dewey Class. No.: 516.36
Introduction to Differential Geometry
LDR
:02997nam a22003975i 4500
001
1092555
003
DE-He213
005
20220223010650.0
007
cr nn 008mamaa
008
221228s2022 gw | s |||| 0|eng d
020
$a
9783662643402
$9
978-3-662-64340-2
024
7
$a
10.1007/978-3-662-64340-2
$2
doi
035
$a
978-3-662-64340-2
050
4
$a
QA641-670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
100
1
$a
Robbin, Joel W.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1363460
245
1 0
$a
Introduction to Differential Geometry
$h
[electronic resource] /
$c
by Joel W. Robbin, Dietmar A. Salamon.
250
$a
1st ed. 2022.
264
1
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer Spektrum,
$c
2022.
300
$a
XIII, 418 p. 45 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Studium Mathematik (Master),
$x
2509-9329
505
0
$a
1 What is Differential Geometry? -- 2 Foundations -- 3 The Levi-Civita Connection -- 4 Geodesics -- 5 Curvature -- 6 Geometry and Topology -- 7 Topics in Geometry -- Appendix.
520
$a
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory. The Authors Joel W. Robbin, Professor emeritus, University of Wisconsin-Madison, Department of Mathematics. Dietmar A. Salamon, Professor emeritus, Eidgenössische Technische Hochschule Zürich (ETHZ), Departement Mathematik.
650
1 4
$a
Differential Geometry.
$3
671118
650
0
$a
Geometry, Differential.
$3
527830
700
1
$a
Salamon, Dietmar A.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1400332
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783662643396
776
0 8
$i
Printed edition:
$z
9783662643419
830
0
$a
Springer Studium Mathematik (Master),
$x
2509-9329
$3
1400333
856
4 0
$u
https://doi.org/10.1007/978-3-662-64340-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入