語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multivariate Statistical Machine Learning Methods for Genomic Prediction
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multivariate Statistical Machine Learning Methods for Genomic Prediction/ by Osval Antonio Montesinos López, Abelardo Montesinos López, José Crossa.
作者:
Montesinos López, Osval Antonio.
其他作者:
Crossa, José.
面頁冊數:
XXIV, 691 p. 113 illus., 61 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Biostatistics. -
電子資源:
https://doi.org/10.1007/978-3-030-89010-0
ISBN:
9783030890100
Multivariate Statistical Machine Learning Methods for Genomic Prediction
Montesinos López, Osval Antonio.
Multivariate Statistical Machine Learning Methods for Genomic Prediction
[electronic resource] /by Osval Antonio Montesinos López, Abelardo Montesinos López, José Crossa. - 1st ed. 2022. - XXIV, 691 p. 113 illus., 61 illus. in color.online resource.
Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction.
Open Access
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
ISBN: 9783030890100
Standard No.: 10.1007/978-3-030-89010-0doiSubjects--Topical Terms:
783654
Biostatistics.
LC Class. No.: S1-972
Dewey Class. No.: 630
Multivariate Statistical Machine Learning Methods for Genomic Prediction
LDR
:03772nam a22004215i 4500
001
1092611
003
DE-He213
005
20220617194600.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030890100
$9
978-3-030-89010-0
024
7
$a
10.1007/978-3-030-89010-0
$2
doi
035
$a
978-3-030-89010-0
050
4
$a
S1-972
072
7
$a
TVB
$2
bicssc
072
7
$a
TEC003000
$2
bisacsh
072
7
$a
TVB
$2
thema
082
0 4
$a
630
$2
23
100
1
$a
Montesinos López, Osval Antonio.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1400400
245
1 0
$a
Multivariate Statistical Machine Learning Methods for Genomic Prediction
$h
[electronic resource] /
$c
by Osval Antonio Montesinos López, Abelardo Montesinos López, José Crossa.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XXIV, 691 p. 113 illus., 61 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction.
506
0
$a
Open Access
520
$a
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
650
2 4
$a
Biostatistics.
$3
783654
650
2 4
$a
Agricultural Genetics.
$3
1387634
650
2 4
$a
Plant Genetics.
$3
1366467
650
0
$a
Biometry.
$3
598268
650
0
$a
Agricultural genome mapping.
$3
1387632
650
0
$a
Plant genetics.
$3
743629
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Agriculture.
$3
660421
700
1
$a
Crossa, José.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1280942
700
1
$a
Montesinos López, Abelardo.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1400401
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030890094
776
0 8
$i
Printed edition:
$z
9783030890117
776
0 8
$i
Printed edition:
$z
9783030890124
856
4 0
$u
https://doi.org/10.1007/978-3-030-89010-0
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
912
$a
ZDB-2-SOB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入