語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep Learning Based Speech Quality Prediction
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep Learning Based Speech Quality Prediction/ by Gabriel Mittag.
作者:
Mittag, Gabriel.
面頁冊數:
XIV, 165 p. 58 illus., 54 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Engineering Acoustics. -
電子資源:
https://doi.org/10.1007/978-3-030-91479-0
ISBN:
9783030914790
Deep Learning Based Speech Quality Prediction
Mittag, Gabriel.
Deep Learning Based Speech Quality Prediction
[electronic resource] /by Gabriel Mittag. - 1st ed. 2022. - XIV, 165 p. 58 illus., 54 illus. in color.online resource. - T-Labs Series in Telecommunication Services,2192-2829. - T-Labs Series in Telecommunication Services,.
1. Introduction -- 2. Quality Assessment of Transmitted Speech -- 3. Neural Network Architectures for Speech Quality Prediction -- 4. Double-Ended Speech Quality Prediction Using Siamese Networks -- 5. Prediction of Speech Quality Dimensions With Multi-Task Learning -- 6. Bias-Aware Loss for Training From Multiple Datasets -- 7. NISQA – A Single-Ended Speech Quality Model -- 8. Conclusions -- A. Dataset Condition Tables -- B. Train and Validation Dataset Dimension Histograms -- References.
This book presents how to apply recent machine learning (deep learning) methods for the task of speech quality prediction. The author shows how recent advancements in machine learning can be leveraged for the task of speech quality prediction and provides an in-depth analysis of the suitability of different deep learning architectures for this task. The author then shows how the resulting model outperforms traditional speech quality models and provides additional information about the cause of a quality impairment through the prediction of the speech quality dimensions of noisiness, coloration, discontinuity, and loudness.
ISBN: 9783030914790
Standard No.: 10.1007/978-3-030-91479-0doiSubjects--Topical Terms:
785331
Engineering Acoustics.
LC Class. No.: TK5102.9
Dewey Class. No.: 621.3822
Deep Learning Based Speech Quality Prediction
LDR
:02577nam a22004335i 4500
001
1094908
003
DE-He213
005
20220224091042.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030914790
$9
978-3-030-91479-0
024
7
$a
10.1007/978-3-030-91479-0
$2
doi
035
$a
978-3-030-91479-0
050
4
$a
TK5102.9
072
7
$a
TJF
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
TJF
$2
thema
072
7
$a
UYS
$2
thema
082
0 4
$a
621.3822
$2
23
100
1
$a
Mittag, Gabriel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1403106
245
1 0
$a
Deep Learning Based Speech Quality Prediction
$h
[electronic resource] /
$c
by Gabriel Mittag.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XIV, 165 p. 58 illus., 54 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
T-Labs Series in Telecommunication Services,
$x
2192-2829
505
0
$a
1. Introduction -- 2. Quality Assessment of Transmitted Speech -- 3. Neural Network Architectures for Speech Quality Prediction -- 4. Double-Ended Speech Quality Prediction Using Siamese Networks -- 5. Prediction of Speech Quality Dimensions With Multi-Task Learning -- 6. Bias-Aware Loss for Training From Multiple Datasets -- 7. NISQA – A Single-Ended Speech Quality Model -- 8. Conclusions -- A. Dataset Condition Tables -- B. Train and Validation Dataset Dimension Histograms -- References.
520
$a
This book presents how to apply recent machine learning (deep learning) methods for the task of speech quality prediction. The author shows how recent advancements in machine learning can be leveraged for the task of speech quality prediction and provides an in-depth analysis of the suitability of different deep learning architectures for this task. The author then shows how the resulting model outperforms traditional speech quality models and provides additional information about the cause of a quality impairment through the prediction of the speech quality dimensions of noisiness, coloration, discontinuity, and loudness.
650
2 4
$a
Engineering Acoustics.
$3
785331
650
2 4
$a
Natural Language Processing (NLP).
$3
1254293
650
2 4
$a
User Interfaces and Human Computer Interaction.
$3
669793
650
1 4
$a
Digital and Analog Signal Processing.
$3
1366690
650
0
$a
Acoustical engineering.
$3
563185
650
0
$a
Natural language processing (Computer science).
$3
802180
650
0
$a
Human-computer interaction.
$3
555546
650
0
$a
User interfaces (Computer systems).
$3
1253526
650
0
$a
Signal processing.
$3
561459
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030914783
776
0 8
$i
Printed edition:
$z
9783030914806
776
0 8
$i
Printed edition:
$z
9783030914813
830
0
$a
T-Labs Series in Telecommunication Services,
$x
2192-2810
$3
1254917
856
4 0
$u
https://doi.org/10.1007/978-3-030-91479-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入