語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective kan fibrations in simplicial sets
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Effective kan fibrations in simplicial sets/ by Benno van den Berg, Eric Faber.
作者:
Berg, Benno van den.
其他作者:
Faber, Eric.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
x, 230 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Homotopy theory. -
電子資源:
https://doi.org/10.1007/978-3-031-18900-5
ISBN:
9783031189005
Effective kan fibrations in simplicial sets
Berg, Benno van den.
Effective kan fibrations in simplicial sets
[electronic resource] /by Benno van den Berg, Eric Faber. - Cham :Springer International Publishing :2022. - x, 230 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v. 23211617-9692 ;. - Lecture notes in mathematics ;1943..
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
ISBN: 9783031189005
Standard No.: 10.1007/978-3-031-18900-5doiSubjects--Topical Terms:
792278
Homotopy theory.
LC Class. No.: QA612.7
Dewey Class. No.: 514.24
Effective kan fibrations in simplicial sets
LDR
:02222nam a2200325 a 4500
001
1097957
003
DE-He213
005
20221209174743.0
006
m d
007
cr nn 008maaau
008
230419s2022 sz s 0 eng d
020
$a
9783031189005
$q
(electronic bk.)
020
$a
9783031188992
$q
(paper)
024
7
$a
10.1007/978-3-031-18900-5
$2
doi
035
$a
978-3-031-18900-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA612.7
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
514.24
$2
23
090
$a
QA612.7
$b
.B493 2022
100
1
$a
Berg, Benno van den.
$3
1408260
245
1 0
$a
Effective kan fibrations in simplicial sets
$h
[electronic resource] /
$c
by Benno van den Berg, Eric Faber.
260
$a
Cham :
$c
2022.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
x, 230 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2321
520
$a
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
650
0
$a
Homotopy theory.
$3
792278
700
1
$a
Faber, Eric.
$e
author.
$3
1393037
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
1943.
$3
882220
856
4 0
$u
https://doi.org/10.1007/978-3-031-18900-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入