語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Natural language processing for corpus linguistics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Natural language processing for corpus linguistics/ Jonathan Dunn.
作者:
Dunn, Jonathan.
出版者:
Cambridge :Cambridge University Press, : 2022.,
面頁冊數:
84 p. :ill., digital ; : 24 cm.;
附註:
Title from publisher's bibliographic system (viewed on 04 Mar 2022).
標題:
Natural language processing (Computer science) -
電子資源:
https://doi.org/10.1017/9781009070447
ISBN:
9781009070447
Natural language processing for corpus linguistics
Dunn, Jonathan.
Natural language processing for corpus linguistics
[electronic resource] /Jonathan Dunn. - Cambridge :Cambridge University Press,2022. - 84 p. :ill., digital ;24 cm. - Cambridge elements. Elements in corpus linguistics,2632-8097. - Cambridge elements.Elements in corpus linguistics..
Title from publisher's bibliographic system (viewed on 04 Mar 2022).
Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications.
ISBN: 9781009070447Subjects--Topical Terms:
641811
Natural language processing (Computer science)
LC Class. No.: P128.C68 / D86 2022
Dewey Class. No.: 410.188
Natural language processing for corpus linguistics
LDR
:01846nam a2200253 a 4500
001
1114099
003
UkCbUP
005
20220409084158.0
006
m d
007
cr nn 008maaau
008
231225s2022 enk o 1 0 eng d
020
$a
9781009070447
$q
(electronic bk.)
020
$a
9781009074438
$q
(paperback)
035
$a
CR9781009070447
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
4
$a
P128.C68
$b
D86 2022
082
0 4
$a
410.188
$2
23
090
$a
P128.C68
$b
D923 2022
100
1
$a
Dunn, Jonathan.
$3
1229841
245
1 0
$a
Natural language processing for corpus linguistics
$h
[electronic resource] /
$c
Jonathan Dunn.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2022.
300
$a
84 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge elements. Elements in corpus linguistics,
$x
2632-8097
500
$a
Title from publisher's bibliographic system (viewed on 04 Mar 2022).
520
$a
Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications.
650
0
$a
Natural language processing (Computer science)
$3
641811
650
0
$a
Corpora (Linguistics)
$x
Data processing.
$3
1426741
830
0
$a
Cambridge elements.
$p
Elements in corpus linguistics.
$3
1426755
856
4 0
$u
https://doi.org/10.1017/9781009070447
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入