語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep reinforcement learning processor design for mobile applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep reinforcement learning processor design for mobile applications/ by Juhyoung Lee, Hoi-Jun Yoo.
作者:
Lee, Juhyoung.
其他作者:
Yoo, Hoi-Jun.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
vi, 101 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Processor Architectures. -
電子資源:
https://doi.org/10.1007/978-3-031-36793-9
ISBN:
9783031367939
Deep reinforcement learning processor design for mobile applications
Lee, Juhyoung.
Deep reinforcement learning processor design for mobile applications
[electronic resource] /by Juhyoung Lee, Hoi-Jun Yoo. - Cham :Springer Nature Switzerland :2023. - vi, 101 p. :ill. (some col.), digital ;24 cm.
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture.
This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI) The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices. Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction. Enables deep reinforcement learning (DRL) optimization at algorithm-, architecture-, and circuit-levels of abstraction; Includes methodologies that can reduce the high cost of DRL; Uses analysis of computational workload characteristics of DRL in the context of acceleration.
ISBN: 9783031367939
Standard No.: 10.1007/978-3-031-36793-9doiSubjects--Topical Terms:
669787
Processor Architectures.
LC Class. No.: Q325.73
Dewey Class. No.: 006.31
Deep reinforcement learning processor design for mobile applications
LDR
:02142nam a2200325 a 4500
001
1116127
003
DE-He213
005
20230814180157.0
006
m d
007
cr nn 008maaau
008
240123s2023 sz s 0 eng d
020
$a
9783031367939
$q
(electronic bk.)
020
$a
9783031367922
$q
(paper)
024
7
$a
10.1007/978-3-031-36793-9
$2
doi
035
$a
978-3-031-36793-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.73
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.73
$b
.L478 2023
100
1
$a
Lee, Juhyoung.
$3
1429208
245
1 0
$a
Deep reinforcement learning processor design for mobile applications
$h
[electronic resource] /
$c
by Juhyoung Lee, Hoi-Jun Yoo.
260
$a
Cham :
$c
2023.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
vi, 101 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture.
520
$a
This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI) The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices. Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction. Enables deep reinforcement learning (DRL) optimization at algorithm-, architecture-, and circuit-levels of abstraction; Includes methodologies that can reduce the high cost of DRL; Uses analysis of computational workload characteristics of DRL in the context of acceleration.
650
2 4
$a
Processor Architectures.
$3
669787
650
2 4
$a
Embedded Systems.
$3
1026431
650
1 4
$a
Electronic Circuits and Systems.
$3
1366689
650
0
$a
Mobile communication systems
$x
Technological innovations.
$3
833045
650
0
$a
Reinforcement learning.
$3
815404
650
0
$a
Deep learning (Machine learning)
$3
1381171
700
1
$a
Yoo, Hoi-Jun.
$3
716172
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-36793-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入