語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Limit theorems for some long range random walks on torsion free nilpotent groups
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Limit theorems for some long range random walks on torsion free nilpotent groups/ by Zhen-Qing Chen ... [et al.].
其他作者:
Chen, Zhen-Qing.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
xiii, 139 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-031-43332-0
ISBN:
9783031433320
Limit theorems for some long range random walks on torsion free nilpotent groups
Limit theorems for some long range random walks on torsion free nilpotent groups
[electronic resource] /by Zhen-Qing Chen ... [et al.]. - Cham :Springer Nature Switzerland :2023. - xiii, 139 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
Setting the stage -- Introduction -- Polynomial coordinates and approximate dilations -- Vague convergence and change of group law -- Weak convergence of the processes -- Local limit theorem -- Symmetric Lévy processes on nilpotent groups -- Measures in SM(Γ) and their geometries -- Adapted approximate group dilations -- The main results for random walks driven by measures in SM(Γ)
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
ISBN: 9783031433320
Standard No.: 10.1007/978-3-031-43332-0doiSubjects--Topical Terms:
527692
Mathematics.
LC Class. No.: QA273.67
Dewey Class. No.: 519.2
Limit theorems for some long range random walks on torsion free nilpotent groups
LDR
:02086nam a2200361 a 4500
001
1117819
003
DE-He213
005
20231024230547.0
006
m d
007
cr nn 008maaau
008
240126s2023 sz s 0 eng d
020
$a
9783031433320
$q
(electronic bk.)
020
$a
9783031433313
$q
(paper)
024
7
$a
10.1007/978-3-031-43332-0
$2
doi
035
$a
978-3-031-43332-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273.67
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
090
$a
QA273.67
$b
.L734 2023
245
0 0
$a
Limit theorems for some long range random walks on torsion free nilpotent groups
$h
[electronic resource] /
$c
by Zhen-Qing Chen ... [et al.].
260
$a
Cham :
$c
2023.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xiii, 139 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
Setting the stage -- Introduction -- Polynomial coordinates and approximate dilations -- Vague convergence and change of group law -- Weak convergence of the processes -- Local limit theorem -- Symmetric Lévy processes on nilpotent groups -- Measures in SM(Γ) and their geometries -- Adapted approximate group dilations -- The main results for random walks driven by measures in SM(Γ)
520
$a
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
650
2 4
$a
Mathematics.
$3
527692
650
2 4
$a
Applied Probability.
$3
1390075
650
1 4
$a
Probability Theory.
$3
1366244
650
0
$a
Random walks (Mathematics)
$3
783164
650
0
$a
Limit theorems (Probability theory)
$3
527828
700
1
$a
Chen, Zhen-Qing.
$e
editor.
$3
1388637
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
883715
856
4 0
$u
https://doi.org/10.1007/978-3-031-43332-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入