語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for astrophysics = proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine learning for astrophysics/ edited by Filomena Bufano ... [et al.].
其他題名:
proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /
其他題名:
ML4Astro 2022
其他作者:
Bufano, Filomena.
團體作者:
Workshop on the Preservation of Stability under Discretization
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xiv, 211 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Astronomy, Observations and Techniques. -
電子資源:
https://doi.org/10.1007/978-3-031-34167-0
ISBN:
9783031341670
Machine learning for astrophysics = proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /
Machine learning for astrophysics
proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /[electronic resource] :ML4Astro 2022edited by Filomena Bufano ... [et al.]. - Cham :Springer International Publishing :2023. - xiv, 211 p. :ill., digital ;24 cm. - Astrophysics and space science proceedings,v. 601570-6605 ;. - Astrophysics and space science proceedings ;v.33..
Machine Learning for H? Emitters Classification -- Stellar Dating Using Chemical Clocks and Bayesian Inference -- Detection of Quasi-Periodic Oscillations in Time Series of a Cataclysmic Variable Using Support Vector Machine -- Dust Extinction from Random Forest Regression of Interstellar Lines -- QSOs Selection in Highly Unbalanced Photometric Datasets: The "Michelangelo" Reverse-Selection Method -- Radio Galaxy Detection Prediction with Ensemble Machine Learning -- A Machine Learning Suite to Halo-Galaxy Connection -- New Applications of Graph Neural Networks in Cosmology -- Detection of Point Sources in Maps of the Temperature Anisotropies of the Cosmic Microwave Background -- Reconstruction and Particle Identification with CYGNO Experiment -- Event Reconstruction for Neutrino Telescopes -- Classification of Evolved Stars with (Unsupervised) Machine Learning Post Proceedings -- Patterns in the Chaos: An Unsupervised View of Galactic Supernova Remnants -- Clustering of Galaxy Spectra: An Unsupervised Approach with Fisher-EM -- Unsupervised Classification Reveals New Evolutionary Pathways -- In Search of the Peculiar: An Unsupervised Approach to Anomaly Detection in the Transient Universe -- Classifying Gamma-Ray Burst X-Ray Afterglows with a Variational Autoencoder -- Reconstructing Blended Galaxies with Machine Learning -- Time Domain Astroinformatics -- A Convolutional Neural Network to Characterise the Internal Structure of Stars -- Finding Stellar Flares with Recurrent Deep Neural Networks -- Planetary Markers in Stellar Spectra: Jupiter-Host Star Classification -- Using Convolutional Neural Networks to Detect and Confirm Exoplanets -- Machine Learning Applied to X-Ray Spectra: Separating Stars from Active Galactic Nuclei -- Classification of System Variability Using A CNN -- Deep Learning Processing and Analysis of Mock Astrophysical Observations -- Deep Neural Networks for Source Detection in Radio Astronomical Maps -- Radio Image Segmentation with Autoencoders -- Citizen Science and Machine Learning: Towards a Robust Large-Scale Automatic Classification in Astronomy -- Background Estimation in Fermi Gamma-Ray Burst Monitor Lightcurves Through a Neural Network -- Machine Learning Investigations for LSST: Strong Lens Mass Modeling and Photometric Redshift Estimation -- Multi-Band Photometry and Photometric Redshifts from Astronomical Images -- Inference of Galaxy Clusters Mass Radial Profiles from Compton-? Maps with Deep Learning Technique -- Deep Learning 21cm Lightcones in 3D -- ConvNets for Enhanced Background Discrimination in the Diffuse Supernova Neutrino-Background (DSNB) Search -- Deep Neural Networks for Single-Line Event Direction Reconstruction in ANTARES -- Cats Vs Dogs, Photons Vs Hadrons -- Events Classification in MAGIC Through Convolutional Neural Network Trained with Images of Observed Gamma-Ray Events -- Federated Learning Meets HPC and Cloud -- Integration and Deployment of Model Serving Framework at Production Scale -- Predictive Maintenance for Array of Cherenkov Telescopes.
This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics.
ISBN: 9783031341670
Standard No.: 10.1007/978-3-031-34167-0doiSubjects--Topical Terms:
769023
Astronomy, Observations and Techniques.
LC Class. No.: QB51.3.E43 / I58 2022
Dewey Class. No.: 523.010285631
Machine learning for astrophysics = proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /
LDR
:04782nam a2200349 a 4500
001
1117937
003
DE-He213
005
20231014213211.0
006
m d
007
cr nn 008maaau
008
240126s2023 sz s 0 eng d
020
$a
9783031341670
$q
(electronic bk.)
020
$a
9783031341663
$q
(paper)
024
7
$a
10.1007/978-3-031-34167-0
$2
doi
035
$a
978-3-031-34167-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QB51.3.E43
$b
I58 2022
072
7
$a
PHVB
$2
bicssc
072
7
$a
SCI005000
$2
bisacsh
072
7
$a
PHVB
$2
thema
082
0 4
$a
523.010285631
$2
23
090
$a
QB51.3.E43
$b
I61 2022
111
2
$a
Workshop on the Preservation of Stability under Discretization
$d
(2001 :
$c
Fort Collins, Colo.)
$3
527686
245
1 0
$a
Machine learning for astrophysics
$h
[electronic resource] :
$b
proceedings of the ML4Astro International Conference 30 May-1 Jun 2022 /
$c
edited by Filomena Bufano ... [et al.].
246
3
$a
ML4Astro 2022
260
$a
Cham :
$c
2023.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiv, 211 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Astrophysics and space science proceedings,
$x
1570-6605 ;
$v
v. 60
505
0
$a
Machine Learning for H? Emitters Classification -- Stellar Dating Using Chemical Clocks and Bayesian Inference -- Detection of Quasi-Periodic Oscillations in Time Series of a Cataclysmic Variable Using Support Vector Machine -- Dust Extinction from Random Forest Regression of Interstellar Lines -- QSOs Selection in Highly Unbalanced Photometric Datasets: The "Michelangelo" Reverse-Selection Method -- Radio Galaxy Detection Prediction with Ensemble Machine Learning -- A Machine Learning Suite to Halo-Galaxy Connection -- New Applications of Graph Neural Networks in Cosmology -- Detection of Point Sources in Maps of the Temperature Anisotropies of the Cosmic Microwave Background -- Reconstruction and Particle Identification with CYGNO Experiment -- Event Reconstruction for Neutrino Telescopes -- Classification of Evolved Stars with (Unsupervised) Machine Learning Post Proceedings -- Patterns in the Chaos: An Unsupervised View of Galactic Supernova Remnants -- Clustering of Galaxy Spectra: An Unsupervised Approach with Fisher-EM -- Unsupervised Classification Reveals New Evolutionary Pathways -- In Search of the Peculiar: An Unsupervised Approach to Anomaly Detection in the Transient Universe -- Classifying Gamma-Ray Burst X-Ray Afterglows with a Variational Autoencoder -- Reconstructing Blended Galaxies with Machine Learning -- Time Domain Astroinformatics -- A Convolutional Neural Network to Characterise the Internal Structure of Stars -- Finding Stellar Flares with Recurrent Deep Neural Networks -- Planetary Markers in Stellar Spectra: Jupiter-Host Star Classification -- Using Convolutional Neural Networks to Detect and Confirm Exoplanets -- Machine Learning Applied to X-Ray Spectra: Separating Stars from Active Galactic Nuclei -- Classification of System Variability Using A CNN -- Deep Learning Processing and Analysis of Mock Astrophysical Observations -- Deep Neural Networks for Source Detection in Radio Astronomical Maps -- Radio Image Segmentation with Autoencoders -- Citizen Science and Machine Learning: Towards a Robust Large-Scale Automatic Classification in Astronomy -- Background Estimation in Fermi Gamma-Ray Burst Monitor Lightcurves Through a Neural Network -- Machine Learning Investigations for LSST: Strong Lens Mass Modeling and Photometric Redshift Estimation -- Multi-Band Photometry and Photometric Redshifts from Astronomical Images -- Inference of Galaxy Clusters Mass Radial Profiles from Compton-? Maps with Deep Learning Technique -- Deep Learning 21cm Lightcones in 3D -- ConvNets for Enhanced Background Discrimination in the Diffuse Supernova Neutrino-Background (DSNB) Search -- Deep Neural Networks for Single-Line Event Direction Reconstruction in ANTARES -- Cats Vs Dogs, Photons Vs Hadrons -- Events Classification in MAGIC Through Convolutional Neural Network Trained with Images of Observed Gamma-Ray Events -- Federated Learning Meets HPC and Cloud -- Integration and Deployment of Model Serving Framework at Production Scale -- Predictive Maintenance for Array of Cherenkov Telescopes.
520
$a
This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics.
650
2 4
$a
Astronomy, Observations and Techniques.
$3
769023
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Astrophysics.
$3
646223
650
0
$a
Machine learning
$v
Congresses.
$3
574552
$3
727808
650
0
$a
Astrophysics
$x
Data processing
$v
Textbooks.
$3
1156733
700
1
$a
Bufano, Filomena.
$3
1431911
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Astrophysics and space science proceedings ;
$v
v.33.
$3
883844
856
4 0
$u
https://doi.org/10.1007/978-3-031-34167-0
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入