語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical modeling using Bayesian latent Gaussian models = with applications in geophysics and environmental sciences /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Statistical modeling using Bayesian latent Gaussian models/ edited by Birgir Hrafnkelsson.
其他題名:
with applications in geophysics and environmental sciences /
其他作者:
Hrafnkelsson, Birgir.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
vii, 251 p. :illustrations (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Geotechnical Engineering and Applied Earth Sciences. -
電子資源:
https://doi.org/10.1007/978-3-031-39791-2
ISBN:
9783031397912
Statistical modeling using Bayesian latent Gaussian models = with applications in geophysics and environmental sciences /
Statistical modeling using Bayesian latent Gaussian models
with applications in geophysics and environmental sciences /[electronic resource] :edited by Birgir Hrafnkelsson. - Cham :Springer International Publishing :2023. - vii, 251 p. :illustrations (some col.), digital ;24 cm.
Preface -- Chapter 1. Birgir Hrafnkelsson and Haakon Bakka: Bayesian latent Gaussian models -- Chapter 2. Giri Gopalan, Andrew Zammit-Mangion, and Felicity McCormack: A review of Bayesian modelling in glaciology -- Chapter 3. Birgir Hrafnkelsson, Rafael Daniel Vias, Solvi Rognvaldsson, Axel Orn Jansson, and Sigurdur M. Gardarsson: Bayesian discharge rating curves based on the generalized power law -- Chapter 4. Sahar Rahpeyma, Milad Kowsari, Tim Sonnemann, Benedikt Halldorsson, and Birgir Hrafnkelsson: Bayesian modeling in engineering seismology: Ground-motion models -- Chapter 5. Atefe Darzi, Birgir Hrafnkelsson, and Benedikt Halldorsson: Bayesian modelling in engineering seismology: Spatial earthquake magnitude model -- Chapter 6. Joshua Lovegrove and Stefan Siegert: Improving numerical weather forecasts by Bayesian hierarchical modelling -- Chapter 7. Arnab Hazra, Raphael Huser, and Arni V. Johannesson: Bayesian latent Gaussian models for high-dimensional spatial extremes.
This book focuses on the statistical modeling of geophysical and environmental data using Bayesian latent Gaussian models. The structure of these models is described in a thorough introductory chapter, which explains how to construct prior densities for the model parameters, how to infer the parameters using Bayesian computation, and how to use the models to make predictions. The remaining six chapters focus on the application of Bayesian latent Gaussian models to real examples in glaciology, hydrology, engineering seismology, seismology, meteorology and climatology. These examples include: spatial predictions of surface mass balance; the estimation of Antarctica's contribution to sea-level rise; the estimation of rating curves for the projection of water level to discharge; ground motion models for strong motion; spatial modeling of earthquake magnitudes; weather forecasting based on numerical model forecasts; and extreme value analysis of precipitation on a high-dimensional grid. The book is aimed at graduate students and experts in statistics, geophysics, environmental sciences, engineering, and related fields.
ISBN: 9783031397912
Standard No.: 10.1007/978-3-031-39791-2doiSubjects--Topical Terms:
1366420
Geotechnical Engineering and Applied Earth Sciences.
LC Class. No.: GE45.S73
Dewey Class. No.: 363.700727
Statistical modeling using Bayesian latent Gaussian models = with applications in geophysics and environmental sciences /
LDR
:03197nam a2200325 a 4500
001
1119840
003
DE-He213
005
20231108173625.0
006
m d
007
cr nn 008maaau
008
240612s2023 sz s 0 eng d
020
$a
9783031397912
$q
(electronic bk.)
020
$a
9783031397905
$q
(paper)
024
7
$a
10.1007/978-3-031-39791-2
$2
doi
035
$a
978-3-031-39791-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
GE45.S73
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
363.700727
$2
23
090
$a
GE45.S73
$b
S797 2023
245
0 0
$a
Statistical modeling using Bayesian latent Gaussian models
$h
[electronic resource] :
$b
with applications in geophysics and environmental sciences /
$c
edited by Birgir Hrafnkelsson.
260
$a
Cham :
$c
2023.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
vii, 251 p. :
$b
illustrations (some col.), digital ;
$c
24 cm.
505
0
$a
Preface -- Chapter 1. Birgir Hrafnkelsson and Haakon Bakka: Bayesian latent Gaussian models -- Chapter 2. Giri Gopalan, Andrew Zammit-Mangion, and Felicity McCormack: A review of Bayesian modelling in glaciology -- Chapter 3. Birgir Hrafnkelsson, Rafael Daniel Vias, Solvi Rognvaldsson, Axel Orn Jansson, and Sigurdur M. Gardarsson: Bayesian discharge rating curves based on the generalized power law -- Chapter 4. Sahar Rahpeyma, Milad Kowsari, Tim Sonnemann, Benedikt Halldorsson, and Birgir Hrafnkelsson: Bayesian modeling in engineering seismology: Ground-motion models -- Chapter 5. Atefe Darzi, Birgir Hrafnkelsson, and Benedikt Halldorsson: Bayesian modelling in engineering seismology: Spatial earthquake magnitude model -- Chapter 6. Joshua Lovegrove and Stefan Siegert: Improving numerical weather forecasts by Bayesian hierarchical modelling -- Chapter 7. Arnab Hazra, Raphael Huser, and Arni V. Johannesson: Bayesian latent Gaussian models for high-dimensional spatial extremes.
520
$a
This book focuses on the statistical modeling of geophysical and environmental data using Bayesian latent Gaussian models. The structure of these models is described in a thorough introductory chapter, which explains how to construct prior densities for the model parameters, how to infer the parameters using Bayesian computation, and how to use the models to make predictions. The remaining six chapters focus on the application of Bayesian latent Gaussian models to real examples in glaciology, hydrology, engineering seismology, seismology, meteorology and climatology. These examples include: spatial predictions of surface mass balance; the estimation of Antarctica's contribution to sea-level rise; the estimation of rating curves for the projection of water level to discharge; ground motion models for strong motion; spatial modeling of earthquake magnitudes; weather forecasting based on numerical model forecasts; and extreme value analysis of precipitation on a high-dimensional grid. The book is aimed at graduate students and experts in statistics, geophysics, environmental sciences, engineering, and related fields.
650
2 4
$a
Geotechnical Engineering and Applied Earth Sciences.
$3
1366420
650
2 4
$a
Environmental Sciences.
$3
1366185
650
2 4
$a
Earth Sciences.
$3
683879
650
2 4
$a
Bayesian Inference.
$3
1211345
650
1 4
$a
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1366002
650
0
$a
Bayesian statistical decision theory.
$3
527671
650
0
$a
Gaussian processes.
$3
672507
650
0
$a
Environmental sciences
$x
Statistical methods.
$3
556065
700
1
$a
Hrafnkelsson, Birgir.
$3
1434732
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-39791-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入