語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Higher index theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Higher index theory // Rufus Willett, Guoliang Yu.
作者:
Willett, Rufus,
其他作者:
Yu, Guoliang,
面頁冊數:
1 online resource (xi, 581 pages) :digital, PDF file(s). :
附註:
Title from publisher's bibliographic system (viewed on 11 Jun 2020).
標題:
Index theory (Mathematics) -
電子資源:
https://doi.org/10.1017/9781108867351
ISBN:
9781108867351 (ebook)
Higher index theory /
Willett, Rufus,1983-
Higher index theory /
Rufus Willett, Guoliang Yu. - 1 online resource (xi, 581 pages) :digital, PDF file(s). - Cambridge studies in advanced mathematics ;189. - Cambridge studies in advanced mathematics ;134..
Title from publisher's bibliographic system (viewed on 11 Jun 2020).
Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.
ISBN: 9781108867351 (ebook)Subjects--Topical Terms:
669689
Index theory (Mathematics)
LC Class. No.: QA614.92 / .W55 2020
Dewey Class. No.: 512/.556
Higher index theory /
LDR
:01968nam a22002898i 4500
001
1123159
003
UkCbUP
005
20200615100020.0
006
m|||||o||d||||||||
007
cr||||||||||||
008
240926s2020||||enk o ||1 0|eng|d
020
$a
9781108867351 (ebook)
020
$z
9781108491068 (hardback)
035
$a
CR9781108867351
040
$a
UkCbUP
$b
eng
$e
rda
$c
UkCbUP
050
0 0
$a
QA614.92
$b
.W55 2020
082
0 0
$a
512/.556
$2
23
100
1
$a
Willett, Rufus,
$d
1983-
$e
author.
$3
1439857
245
1 0
$a
Higher index theory /
$c
Rufus Willett, Guoliang Yu.
264
1
$a
Cambridge :
$b
Cambridge University Press,
$c
2020.
300
$a
1 online resource (xi, 581 pages) :
$b
digital, PDF file(s).
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Cambridge studies in advanced mathematics ;
$v
189
500
$a
Title from publisher's bibliographic system (viewed on 11 Jun 2020).
520
$a
Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.
650
0
$a
Index theory (Mathematics)
$3
669689
650
0
$a
C*-algebras.
$3
683012
650
0
$a
K-theory.
$3
672462
700
1
$a
Yu, Guoliang,
$d
1963-
$e
author.
$3
1439858
776
0 8
$i
Print version:
$z
9781108491068
830
0
$a
Cambridge studies in advanced mathematics ;
$v
134.
$3
1133579
856
4 0
$u
https://doi.org/10.1017/9781108867351
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入