語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Categorical homotopy theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Categorical homotopy theory // Emily Riehl, Harvard University.
作者:
Riehl, Emily,
面頁冊數:
1 online resource (xviii, 352 pages) :digital, PDF file(s). :
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
標題:
Algebra, Homological. -
電子資源:
https://doi.org/10.1017/CBO9781107261457
ISBN:
9781107261457 (ebook)
Categorical homotopy theory /
Riehl, Emily,
Categorical homotopy theory /
Emily Riehl, Harvard University. - 1 online resource (xviii, 352 pages) :digital, PDF file(s). - New mathematical monographs ;24. - New mathematical monographs ;31..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
ISBN: 9781107261457 (ebook)Subjects--Topical Terms:
672614
Algebra, Homological.
LC Class. No.: QA612.7 / .R45 2014
Dewey Class. No.: 514/.24
Categorical homotopy theory /
LDR
:02058nam a2200289 i 4500
001
1124096
003
UkCbUP
005
20151005020624.0
006
m|||||o||d||||||||
007
cr||||||||||||
008
240926s2014||||enk o ||1 0|eng|d
020
$a
9781107261457 (ebook)
020
$z
9781107048454 (hardback)
035
$a
CR9781107261457
040
$a
UkCbUP
$b
eng
$e
rda
$c
UkCbUP
050
0 0
$a
QA612.7
$b
.R45 2014
082
0 0
$a
514/.24
$2
23
100
1
$a
Riehl, Emily,
$e
author.
$3
1441423
245
1 0
$a
Categorical homotopy theory /
$c
Emily Riehl, Harvard University.
264
1
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
1 online resource (xviii, 352 pages) :
$b
digital, PDF file(s).
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
New mathematical monographs ;
$v
24
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
520
$a
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
650
0
$a
Algebra, Homological.
$3
672614
650
0
$a
Homotopy theory.
$3
792278
776
0 8
$i
Print version:
$z
9781107048454
830
0
$a
New mathematical monographs ;
$v
31.
$3
1238333
856
4 0
$u
https://doi.org/10.1017/CBO9781107261457
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入