語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
機器學習預測模型在失智症診斷之應用 = = An application...
~
張弘毅
機器學習預測模型在失智症診斷之應用 = = An application of machine learning predictive models in the dementia diagnosis /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
機器學習預測模型在失智症診斷之應用 =/ 張弘毅.
其他題名:
An application of machine learning predictive models in the dementia diagnosis /
其他題名:
An application of machine learning predictive models in the dementia diagnosis.
作者:
張弘毅
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.06.,
面頁冊數:
[8], 54面 :圖, 表 ; : 30公分.;
附註:
指導教授: 郭文宏.
標題:
Diagnosis. -
電子資源:
電子資源
機器學習預測模型在失智症診斷之應用 = = An application of machine learning predictive models in the dementia diagnosis /
張弘毅
機器學習預測模型在失智症診斷之應用 =
An application of machine learning predictive models in the dementia diagnosis /An application of machine learning predictive models in the dementia diagnosis.張弘毅. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.06. - [8], 54面 :圖, 表 ;30公分.
指導教授: 郭文宏.
碩士論文--國立虎尾科技大學資訊管理系碩士在職專班.
含參考書目.
失智症是一種逐漸惡化的神經退行性疾病,嚴重影響腦部功能,導致記憶力下降、認知能力衰退和行為改變。隨著全球人口老齡化問題日益嚴重,失智症已成為一個重大的公共衛生挑戰。《精神障礙診斷與統計手冊》(DSM)將失智症重新歸類為一種神經認知障礙(Neurocognitive Disorder),這標誌著對該疾病更全面理解的轉變。與其以往主要將失智症歸類為認知障礙不同,DSM-5在知道失智症是一種涉及多種神經症狀和缺陷的複雜疾病。這一重新分類強調了失智症的神經生物學基礎,並鼓勵臨床醫生在診斷和治療時考慮認知神經因素。利用機器學習技術,我們可以從大型醫學數據集中識別相關特徵,從而提高失智症的預測和診斷能力。本文目的在利用支援向量機(Support Vector Machine,SVM)和其他機器學習方法來分析潛在相關特徵,以預測失智症。我們的目標是改善早期失智症的識別,促進及時介入和治療,最終提高患者的生活質量和預後。.
(平裝)Subjects--Topical Terms:
654481
Diagnosis.
機器學習預測模型在失智症診斷之應用 = = An application of machine learning predictive models in the dementia diagnosis /
LDR
:03396cam a2200241 i 4500
001
1129697
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI1396003
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.161M
$b
1110 113
$2
ncsclt
100
1
$a
張弘毅
$3
1448758
245
1 0
$a
機器學習預測模型在失智症診斷之應用 =
$b
An application of machine learning predictive models in the dementia diagnosis /
$c
張弘毅.
246
1 1
$a
An application of machine learning predictive models in the dementia diagnosis.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.06.
300
$a
[8], 54面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 郭文宏.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學資訊管理系碩士在職專班.
504
$a
含參考書目.
520
3
$a
失智症是一種逐漸惡化的神經退行性疾病,嚴重影響腦部功能,導致記憶力下降、認知能力衰退和行為改變。隨著全球人口老齡化問題日益嚴重,失智症已成為一個重大的公共衛生挑戰。《精神障礙診斷與統計手冊》(DSM)將失智症重新歸類為一種神經認知障礙(Neurocognitive Disorder),這標誌著對該疾病更全面理解的轉變。與其以往主要將失智症歸類為認知障礙不同,DSM-5在知道失智症是一種涉及多種神經症狀和缺陷的複雜疾病。這一重新分類強調了失智症的神經生物學基礎,並鼓勵臨床醫生在診斷和治療時考慮認知神經因素。利用機器學習技術,我們可以從大型醫學數據集中識別相關特徵,從而提高失智症的預測和診斷能力。本文目的在利用支援向量機(Support Vector Machine,SVM)和其他機器學習方法來分析潛在相關特徵,以預測失智症。我們的目標是改善早期失智症的識別,促進及時介入和治療,最終提高患者的生活質量和預後。.
520
3
$a
Dementia, a progressive neurodegenerative disease, significantly impacts brain function, leading to memory loss, cognitive decline, and behavioral changes. With the global aging population, dementia has emerged as a major public health challenge. The reclassification of dementia by the Diagnostic and Statistical Manual of Mental Disorders (DSM) as a neurocognitive disorder signifies a shift towards a more comprehensive understanding of the condition. Unlike its previous classification primarily as a cognitive disorder, DSM-5 recognizes dementia as a complex disorder involving not only cognitive decline but also a wide range of neurological symptoms and deficits. This reclassification emphasizes the underlying neurobiological basis of dementia and encourages clinicians to consider both cognitive and neurological factors when diagnosing and managing the condition. Leveraging machine learning (ML) techniques presents an opportunity to enhance dementia prediction and diagnosis by identifying relevant features from large medical datasets. This paper aims to utilize Support Vector Machine (SVM) and other ML methods to predict dementia by analyzing potentially relevant features. The objective is to improve early dementia identification, facilitate timely intervention and treatment, and ultimately enhance patient quality of life and prognosis..
563
$a
(平裝)
650
# 4
$a
Diagnosis.
$3
654481
650
# 4
$a
Prediction.
$3
1421709
650
# 4
$a
Support Vector Machine.
$3
995658
650
# 4
$a
Machine Learning.
$3
1137723
650
# 4
$a
Neurocognitive Disorder.
$3
1451515
650
# 4
$a
Dementia.
$3
678297
650
# 7
$a
診斷.
$2
lcstt
$3
1084239
650
# 4
$a
預測.
$3
1016563
650
# 4
$a
支援向量機.
$3
995664
650
# 4
$a
機器學習.
$3
995923
650
# 4
$a
神經認知障礙.
$3
1451514
650
# 7
$2
csh
$a
失智症.
$3
878151
856
7 #
$u
https://handle.ncl.edu.tw/11296/9s63tx
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013246
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.161M 1110 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入