Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 = = Low N...
~
黃上祐
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 = = Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 =/ 黃上祐.
Reminder of title:
Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /
remainder title:
Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors.
Author:
黃上祐
Published:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
Description:
[9], 66面 :圖, 表 ; : 30公分.;
Notes:
指導教授: 沈自.
Subject:
低雜訊放大器. -
Online resource:
電子資源
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 = = Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /
黃上祐
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 =
Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors.黃上祐. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [9], 66面 :圖, 表 ;30公分.
指導教授: 沈自.
碩士論文--國立虎尾科技大學電子工程系碩士班.
含參考書目.
本論文主要為研究並設計多個低雜訊放大器(Low Noise Amplifier, LNA),操作的頻段為X-Band(8-12 GHz)、Ku-Band(12-18 GHz)及18-24 GHz。在射頻接收機中,低雜訊放大器位於前端的位置,主要用於放大天線接收的信號,並且在放大信號的同時盡可能的抑制雜訊。因此在設計低雜訊放大器時必須要降低雜訊、提高增益並且保持高穩定度。本論文電路使用了串接式架構、疊接式架構、回授式架構、源極電感退化式架構、電流再利用架構及寬帶匹配架構來完成。電路元件使用穩懋半導體公司(WIN Semiconductors Corp.)提供的0.15μm pHEMT製程實現電路並進行模擬分析。 論文第一部分為X-Band低雜訊放大器之設計,此電路主要使用串接式架構來實現,此架構能有效提升整體增益並且擁有較好的反向隔離度,第一級使用回授式架構組合而成,使其增益平坦化並提高穩定度。此電路模擬增益為14.67~18.11 dB,輸入反射係數為-12.58~-15.47 dB,輸出反射係數為-10.28~-18.71 dB,反向隔離度為-24.52~ -32.01 dB,雜訊指數為1.74~2.05 dB。 論文第二部分為Ku-Band低雜訊放大器之設計,此電路主要使用串接式架構來實現,目的為提升電路整體增益,並於第二級中加入回授式架構、第三級中加入寬帶匹配架構,目的為在提高整體增益的同時使其增益平坦化並提高電路穩定度。此電路模擬增益為14.04~17.26 dB,輸入反射係數為-10.85~-23.23 dB,輸出反射係數為-10.92~-12.30 dB,反向隔離度為-40.77~-42.94 dB,雜訊指數為2.60~3.44 dB。 論文第三部分為18-24 GHz低雜訊放大器之設計,此電路主要使用疊接式架構與電流再利用架構來實現。疊接式架構可以降低米勒效應對電路產生的負面影響,並透過電流再利用架構提升電路增益與降低功耗。此電路模擬增益為10.06 dB~13.22 dB,輸入反射係數為-15.85~-19.69 dB,輸出反射係數為-16.44~-18.30 dB,反向隔離度為-19.31 ~-24.89 dB,雜訊指數為1.75~2.46 dB。.
(平裝)Subjects--Topical Terms:
996293
低雜訊放大器.
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 = = Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /
LDR
:05850cam a2200241 i 4500
001
1129722
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0428011
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.160M
$b
4423:3 113
$2
ncsclt
100
1
$a
黃上祐
$3
1448780
245
1 0
$a
利用pHEMT電晶體設計於多種微波頻段之低雜訊放大器 =
$b
Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors /
$c
黃上祐.
246
1 1
$a
Low Noise Amplifier Designs in Various Microwave Frequency Bands by pHEMT Transistors.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[9], 66面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 沈自.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學電子工程系碩士班.
504
$a
含參考書目.
520
3
$a
本論文主要為研究並設計多個低雜訊放大器(Low Noise Amplifier, LNA),操作的頻段為X-Band(8-12 GHz)、Ku-Band(12-18 GHz)及18-24 GHz。在射頻接收機中,低雜訊放大器位於前端的位置,主要用於放大天線接收的信號,並且在放大信號的同時盡可能的抑制雜訊。因此在設計低雜訊放大器時必須要降低雜訊、提高增益並且保持高穩定度。本論文電路使用了串接式架構、疊接式架構、回授式架構、源極電感退化式架構、電流再利用架構及寬帶匹配架構來完成。電路元件使用穩懋半導體公司(WIN Semiconductors Corp.)提供的0.15μm pHEMT製程實現電路並進行模擬分析。 論文第一部分為X-Band低雜訊放大器之設計,此電路主要使用串接式架構來實現,此架構能有效提升整體增益並且擁有較好的反向隔離度,第一級使用回授式架構組合而成,使其增益平坦化並提高穩定度。此電路模擬增益為14.67~18.11 dB,輸入反射係數為-12.58~-15.47 dB,輸出反射係數為-10.28~-18.71 dB,反向隔離度為-24.52~ -32.01 dB,雜訊指數為1.74~2.05 dB。 論文第二部分為Ku-Band低雜訊放大器之設計,此電路主要使用串接式架構來實現,目的為提升電路整體增益,並於第二級中加入回授式架構、第三級中加入寬帶匹配架構,目的為在提高整體增益的同時使其增益平坦化並提高電路穩定度。此電路模擬增益為14.04~17.26 dB,輸入反射係數為-10.85~-23.23 dB,輸出反射係數為-10.92~-12.30 dB,反向隔離度為-40.77~-42.94 dB,雜訊指數為2.60~3.44 dB。 論文第三部分為18-24 GHz低雜訊放大器之設計,此電路主要使用疊接式架構與電流再利用架構來實現。疊接式架構可以降低米勒效應對電路產生的負面影響,並透過電流再利用架構提升電路增益與降低功耗。此電路模擬增益為10.06 dB~13.22 dB,輸入反射係數為-15.85~-19.69 dB,輸出反射係數為-16.44~-18.30 dB,反向隔離度為-19.31 ~-24.89 dB,雜訊指數為1.75~2.46 dB。.
520
3
$a
This thesis primarily investigates and designs Low Noise Amplifiers(LNA) operating within the frequency bands of X-Band (8-12 GHz), Ku-Band (12-18 GHz), and 18-24 GHz. For a RF receiver, the LNA is positioned at the front end to amplify signals received by antennas while suppressing noise as much as possible. Therefore, when designing the LNA, it is crucial to reduce noise, increase gain, and maintain high stability. This thesis explores circuit designs including cascade structure, cascade structure, feedback structure, source inductance degeneration, current reuse method, and broadband matching architectures to achieve the circuit specs. The circuit implementation utilizes the 0.15μm pHEMT process provided by WIN Semiconductors Corp, to conduct simulation analyses for validation. This first part of the thesis focuses on the design of an X-Band low noise amplifier. The circuit primarily adopts a cascade structure, which effectively improves the overall gain while providing better reverse isolation. The first stage is composed of a feedback structure to flatten the gain and improve stability. The simulated results of this circuit show a gain range of 14.67 to 18.11 dB, input reflection coefficient of -12.58 to -15.47 dB, output reflection coefficient of -10.28 to -18.71 dB, reverse isolation of -24.52 to -32.01 dB, and noise figure of 1.74 to 2.05 dB. The second part of the thesis focuses on the design of a Ku-Band low noise amplifier. This circuit primarily adopts a cascaded structure aimed at enhancing the overall circuit gain. A feedback structure is incorporated in the second stage, and a broadband matching structure is added in the third stage to achieve gain flatness and improve circuit stability while boosting the overall gain. The simulation results of this circuit show a gain range of 14.08 to 17.26 dB, input reflection coefficient ranging from -10.85 to -23.23 dB, output reflection coefficient ranging from -10.92 to -12.30 dB, reverse isolation ranging from -40.77 to -42.94 dB, and noise figure ranging from 2.60 to 3.44 dB. The third part of the thesis focuses on the design of an 18-24 GHz low noise amplifier. This circuit primarily employs a cascode structure and a current reuse architecture. The cascode structure helps mitigating the negative effects of the Miller effect on the circuit, while the current reuse architecture is utilized to enhance circuit gain and reduce power consumption. The simulation results for this circuit show a gain range of 10.06 to 13.22 dB, input reflection coefficients ranging from -15.85 to -19.69 dB, output reflection coefficients ranging from -16.44 to -18.30 dB, reverse isolation ranging from -19.31 to -24.89 dB, and noise figure ranging from 1.75 to 2.46 dB..
563
$a
(平裝)
650
# 4
$a
低雜訊放大器.
$3
996293
650
# 4
$a
串接.
$3
996290
650
# 4
$a
疊接.
$3
996291
650
# 4
$a
電流再利用.
$3
1048585
650
# 4
$a
Low Noise Amplifier.
$3
1048584
650
# 4
$a
X-Band.
$3
1419281
650
# 4
$a
Ku-Band.
$3
996289
650
# 4
$a
Cascade.
$3
1127688
650
# 4
$a
Cascode.
$3
1127689
650
# 4
$a
current reuse method to achieve the circuit specs.
$3
1451670
650
# 4
$a
pHEMT.
$3
996292
856
7 #
$u
https://handle.ncl.edu.tw/11296/4gm3zm
$z
電子資源
$2
http
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T013280
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.160M 4423:3 113
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login