Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
使用DCU-Net於積水偵測與分割之研究 = = A Study of ...
~
許哲軒
使用DCU-Net於積水偵測與分割之研究 = = A Study of Water-Puddle Detection and Segmentation Using DCU-Net /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
使用DCU-Net於積水偵測與分割之研究 =/ 許哲軒.
Reminder of title:
A Study of Water-Puddle Detection and Segmentation Using DCU-Net /
remainder title:
A Study of Water-Puddle Detection and Segmentation Using DCU-Net.
Author:
許哲軒
Published:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
Description:
[12], 107面 :圖, 表 ; : 30公分.;
Notes:
指導教授: 張朝陽.
Subject:
卷積神經網路. -
Online resource:
電子資源
使用DCU-Net於積水偵測與分割之研究 = = A Study of Water-Puddle Detection and Segmentation Using DCU-Net /
許哲軒
使用DCU-Net於積水偵測與分割之研究 =
A Study of Water-Puddle Detection and Segmentation Using DCU-Net /A Study of Water-Puddle Detection and Segmentation Using DCU-Net.許哲軒. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [12], 107面 :圖, 表 ;30公分.
指導教授: 張朝陽.
碩士論文--國立虎尾科技大學資訊工程系碩士班.
含參考書目.
近年來隨著人工智慧(AI; Artificial Intelligence)的發展,深度學習(DL; Deep Learning)的應用不斷的擴大。不論是在交通、製造、電子、醫學研究等領域都已廣泛應用。為了更精確對任務進行洞察和預測,如何提升模型的性能已成為一種趨勢。然而對於不同的任務,不同的問題也會接踵而來。另外極端氣候變化對道路安全造成越來越多的威脅,因暴雨沖刷、土石流、地震頻繁產生路面坑洞和裂縫,在下雨時路面容易形成不規則的積水,影響交通道路安全。因此可以利用人工智慧對道路進行偵測,透過人工智慧的協助可以對特定區域進行偵測,並且可以減少人力的支出,準確的偵測(Detection)和分割(Segmentation)這些隱患成為保護用路人安全的關鍵。本研究採用U-Net作為改進的基礎模型,該模型在語意分割任務中有顯著的突破,因此提出了一種新型的密集連接U-Net (DCU-Net; Dense Connection U-Net)架構,由於積水的偵測和分割問題的複雜性很高,因為它具備不規則大小及形狀,也可能是清澈或混濁的積水,且都具有反光特性,容易將周遭環境也偵測為積水區域。DCU-Net使用DenseNet121作為編碼器,DenseNet在語意分割及目標檢測上的精準度有顯著的表現,通過特徵重用來減少模型的參數數量,並利用跳躍連接增強編碼階段和解碼階段之間的特徵傳遞,從而有效恢復特徵的細節。與現有的文獻比較時,在考慮實際積水的情況下,本論文提出的方法能夠更準確的進行偵測與分割。在模型評估指標結果中對準確率(Accuracy)、精確率(Precision)、召回率(Recall)、F1-scorec 和交並比(IOU; Intersection over Union)進行比較,不論是哪種評估指標,本論文提出的方法皆優於其他現有文獻。.
(平裝)Subjects--Topical Terms:
1127424
卷積神經網路.
使用DCU-Net於積水偵測與分割之研究 = = A Study of Water-Puddle Detection and Segmentation Using DCU-Net /
LDR
:04901cam a2200241 i 4500
001
1129820
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0392017
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.163M
$b
0855 113
$2
ncsclt
100
1
$a
許哲軒
$3
1448869
245
1 0
$a
使用DCU-Net於積水偵測與分割之研究 =
$b
A Study of Water-Puddle Detection and Segmentation Using DCU-Net /
$c
許哲軒.
246
1 1
$a
A Study of Water-Puddle Detection and Segmentation Using DCU-Net.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[12], 107面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 張朝陽.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學資訊工程系碩士班.
504
$a
含參考書目.
520
3
$a
近年來隨著人工智慧(AI; Artificial Intelligence)的發展,深度學習(DL; Deep Learning)的應用不斷的擴大。不論是在交通、製造、電子、醫學研究等領域都已廣泛應用。為了更精確對任務進行洞察和預測,如何提升模型的性能已成為一種趨勢。然而對於不同的任務,不同的問題也會接踵而來。另外極端氣候變化對道路安全造成越來越多的威脅,因暴雨沖刷、土石流、地震頻繁產生路面坑洞和裂縫,在下雨時路面容易形成不規則的積水,影響交通道路安全。因此可以利用人工智慧對道路進行偵測,透過人工智慧的協助可以對特定區域進行偵測,並且可以減少人力的支出,準確的偵測(Detection)和分割(Segmentation)這些隱患成為保護用路人安全的關鍵。本研究採用U-Net作為改進的基礎模型,該模型在語意分割任務中有顯著的突破,因此提出了一種新型的密集連接U-Net (DCU-Net; Dense Connection U-Net)架構,由於積水的偵測和分割問題的複雜性很高,因為它具備不規則大小及形狀,也可能是清澈或混濁的積水,且都具有反光特性,容易將周遭環境也偵測為積水區域。DCU-Net使用DenseNet121作為編碼器,DenseNet在語意分割及目標檢測上的精準度有顯著的表現,通過特徵重用來減少模型的參數數量,並利用跳躍連接增強編碼階段和解碼階段之間的特徵傳遞,從而有效恢復特徵的細節。與現有的文獻比較時,在考慮實際積水的情況下,本論文提出的方法能夠更準確的進行偵測與分割。在模型評估指標結果中對準確率(Accuracy)、精確率(Precision)、召回率(Recall)、F1-scorec 和交並比(IOU; Intersection over Union)進行比較,不論是哪種評估指標,本論文提出的方法皆優於其他現有文獻。.
520
3
$a
In recent years, with the development of artificial intelligence (AI), the applications of deep learning have been continuously expanding. It has been widely applied in various fields such as transportation, manufacturing, electronics, and medical research. To gain more precise insights and predictions for specific tasks, improving model performance has become a trend. However, different tasks bring different challenges. Additionally, extreme climate changes have posed increasing threats to road safety. Heavy rains, landslides, and frequent earthquakes create potholes and cracks on road surfaces, making roads prone to irregular water accumulation during rain, which affects traffic safety. Therefore, AI can be used for road detection. With the assistance of AI, specific areas can be monitored which help in reducing manpower expenditure. Accurate detection and segmentation of these hazards are crucial for protecting road users' safety. This study uses U-Net as the base model for improvement, as it has shown significant breakthroughs in semantic segmentation tasks. Hence, a novel Dense Connected U-Net (DCU-Net) architecture is proposed. Due to the high complexity of water detection and segmentation problems, which involve irregular sizes and shapes, and the water can be clear or turbid with reflective properties that often mislead the detection of surrounding environments as water areas, DCU-Net adopts DenseNet121 as the encoder. DenseNet has shown significant performance in semantic segmentation and object detection. It reduces the number of model parameters through feature reuse and enhances feature transmission between the encoding and decoding stages using skip connections, effectively recovering feature details. Compared with existing literature, and considering actual water accumulation scenarios, the method proposed in this paper can achieve more accurate detection and segmentation. In the model evaluation metrics, including accuracy, precision, recall, F1-score and IOU the proposed method outperforms other existing literature in all evaluation metrics..
563
$a
(平裝)
650
# 4
$a
卷積神經網路.
$3
1127424
650
# 4
$a
圖像分割.
$3
1451469
650
# 4
$a
深度學習.
$3
1127425
650
# 4
$a
影像辨識.
$3
1015728
650
# 4
$a
積水.
$3
998345
650
# 4
$a
Convolutional Neural Network.
$3
1127421
650
# 4
$a
Image Segmentation.
$3
1451470
650
# 4
$a
Deep Learning.
$3
1127423
650
# 4
$a
Image Recognition.
$3
1047663
650
# 4
$a
Water-Puddle.
$3
1451471
856
7 #
$u
https://handle.ncl.edu.tw/11296/89mv2c
$z
電子資源
$2
http
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T013236
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.163M 0855 113
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login