語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 = = Anal...
~
楊明勳
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 = = Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 =/ 楊明勳.
其他題名:
Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /
其他題名:
Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings.
作者:
楊明勳
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
面頁冊數:
[17], 135面 :圖, 表 ; : 30公分.;
附註:
指導教授: 張銀祐.
標題:
thermal stability. -
電子資源:
電子資源
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 = = Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /
楊明勳
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 =
Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings.楊明勳. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [17], 135面 :圖, 表 ;30公分.
指導教授: 張銀祐.
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
含參考書目.
本研究選用兩種不同機械性質的靶材,分別為高硬度與高楊式係數的鈦矽靶材(TiSi),加入具有耐磨性與抗氧化性的鋁鉻鉬(AlCrMo),並使用陰極電弧蒸鍍技術(CAE)製備周期比例1:1的多層氮化鈦矽與氮化鋁鉻鉬(TiSiN/AlCrMoN)薄膜,進行常溫刮痕、磨耗及動態衝擊試驗與500 ºC動態衝擊實驗,真空中持溫一小時、二小時、四小真空退火及800 ºC、900 ºC、1000 ºC一小時真空退火後的微結構進行分析,觀察真空中硬度與相變化的關聯。 沉積態的三種薄膜於SEM與TEM下觀察都呈現明顯柱狀晶,並為四方晶FCC相Na-Cl結構,單層氮化鈦矽(TiSiN)薄膜硬度值為41.99±0.65GPa,單層氮化鋁鉻鉬(AlCrMo)薄膜硬度值為29.18±0.86GPa,多層氮化鈦矽鋁鉻鉬TiSiN/AlCrMoN薄膜硬度值為35.57±0.2並具有最小的晶粒尺寸。TiSiN薄膜因頂層與介層間硬度值差異較大產生殘餘應力導致刮痕附著力試驗中最早被觀察到Lc2薄膜裂痕與Lc3薄膜的剝落。AlCrMoN與TiSiN/AlCrMoN薄膜因硬度與殘餘應力較低,於刮痕試驗中附著力優良,僅在100N位置觀察到Lc2,TiSiN薄膜於室溫球對盤試驗中因高硬度與高殘留應力使薄膜失效,加工中金紅石相的薄膜氧化物TiO2會增加摩擦係數與磨耗率,軌跡周圍剝落呈現羽片狀脆性裂紋,AlCrMoN薄膜加工軌跡周圍無明顯裂紋且有較多氧化物堆積,這些氧化物磨屑Al2O3、Cr2O3能有效降低摩擦係數與磨耗率。疲勞衝擊試驗中TiSiN薄膜由於柱狀晶與高殘餘應力,壓痕周圍因受到剪應力使結構錯位導致失效,AlCrMoN薄膜因抗塑性變形能力較差,使中心區域薄膜造成內聚壞而失效,薄膜受到疲勞衝擊後的深度與寬度影響最低。從常溫與500ºC試片的XPS縱深分析中比較薄膜氧化深度及氧化物元素,單層TiSiN與AlCrMoN薄膜則因單層與粗大的柱狀晶結構易受到衝擊破壞使氧氣進入薄膜,TiSiN/AlCrMoN薄膜中因多層結構使晶界強化阻止差排降低晶粒尺寸,薄膜結構更致密並提升抗塑性變型能力與耐高溫氧化性,於表層產生氧化矽層熱障完全阻止薄膜進一步氧化,具有最好的耐高溫疲勞衝擊性。 真空熱穩定性實驗XRD與奈米壓痕分析中,單層TiSiN薄膜的SiNx相分解溫度於900°C一小時以上才會分解導致硬度降低,於1000°C一小時退火硬度與微結構並不會改變。單層AlCrMoN薄膜於900°C四小時與1000°C會分解出六方晶w-AlN與h-Cr2N相使硬度大幅降低。多層TiSiN/AlCrMoN因多層的堆疊使薄膜結構晶界強化阻止差排,於900°C真空退火一小時第一次旋節分解會使硬度上升,於900°C四小時延後相分解溫度進而維持硬度,1000°C一小時中發生第二次旋節分解使硬度降低。.
(平裝)Subjects--Topical Terms:
1011291
thermal stability.
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 = = Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /
LDR
:07960cam a2200241 i 4500
001
1129850
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0689018
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.120M
$b
4662 113
$2
ncsclt
100
1
$a
楊明勳
$3
1448896
245
1 0
$a
氮化鋁鉻鉬與氮化鈦矽奈米多層薄膜的耐高溫和機械性質分析 =
$b
Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings /
$c
楊明勳.
246
1 1
$a
Analyses of thermal stabilities and mechanical properties of AlCrMoN/TiSiN nanolayered coatings.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[17], 135面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 張銀祐.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
504
$a
含參考書目.
520
3
$a
本研究選用兩種不同機械性質的靶材,分別為高硬度與高楊式係數的鈦矽靶材(TiSi),加入具有耐磨性與抗氧化性的鋁鉻鉬(AlCrMo),並使用陰極電弧蒸鍍技術(CAE)製備周期比例1:1的多層氮化鈦矽與氮化鋁鉻鉬(TiSiN/AlCrMoN)薄膜,進行常溫刮痕、磨耗及動態衝擊試驗與500 ºC動態衝擊實驗,真空中持溫一小時、二小時、四小真空退火及800 ºC、900 ºC、1000 ºC一小時真空退火後的微結構進行分析,觀察真空中硬度與相變化的關聯。 沉積態的三種薄膜於SEM與TEM下觀察都呈現明顯柱狀晶,並為四方晶FCC相Na-Cl結構,單層氮化鈦矽(TiSiN)薄膜硬度值為41.99±0.65GPa,單層氮化鋁鉻鉬(AlCrMo)薄膜硬度值為29.18±0.86GPa,多層氮化鈦矽鋁鉻鉬TiSiN/AlCrMoN薄膜硬度值為35.57±0.2並具有最小的晶粒尺寸。TiSiN薄膜因頂層與介層間硬度值差異較大產生殘餘應力導致刮痕附著力試驗中最早被觀察到Lc2薄膜裂痕與Lc3薄膜的剝落。AlCrMoN與TiSiN/AlCrMoN薄膜因硬度與殘餘應力較低,於刮痕試驗中附著力優良,僅在100N位置觀察到Lc2,TiSiN薄膜於室溫球對盤試驗中因高硬度與高殘留應力使薄膜失效,加工中金紅石相的薄膜氧化物TiO2會增加摩擦係數與磨耗率,軌跡周圍剝落呈現羽片狀脆性裂紋,AlCrMoN薄膜加工軌跡周圍無明顯裂紋且有較多氧化物堆積,這些氧化物磨屑Al2O3、Cr2O3能有效降低摩擦係數與磨耗率。疲勞衝擊試驗中TiSiN薄膜由於柱狀晶與高殘餘應力,壓痕周圍因受到剪應力使結構錯位導致失效,AlCrMoN薄膜因抗塑性變形能力較差,使中心區域薄膜造成內聚壞而失效,薄膜受到疲勞衝擊後的深度與寬度影響最低。從常溫與500ºC試片的XPS縱深分析中比較薄膜氧化深度及氧化物元素,單層TiSiN與AlCrMoN薄膜則因單層與粗大的柱狀晶結構易受到衝擊破壞使氧氣進入薄膜,TiSiN/AlCrMoN薄膜中因多層結構使晶界強化阻止差排降低晶粒尺寸,薄膜結構更致密並提升抗塑性變型能力與耐高溫氧化性,於表層產生氧化矽層熱障完全阻止薄膜進一步氧化,具有最好的耐高溫疲勞衝擊性。 真空熱穩定性實驗XRD與奈米壓痕分析中,單層TiSiN薄膜的SiNx相分解溫度於900°C一小時以上才會分解導致硬度降低,於1000°C一小時退火硬度與微結構並不會改變。單層AlCrMoN薄膜於900°C四小時與1000°C會分解出六方晶w-AlN與h-Cr2N相使硬度大幅降低。多層TiSiN/AlCrMoN因多層的堆疊使薄膜結構晶界強化阻止差排,於900°C真空退火一小時第一次旋節分解會使硬度上升,於900°C四小時延後相分解溫度進而維持硬度,1000°C一小時中發生第二次旋節分解使硬度降低。.
520
3
$a
This study selected two types of target materials with different mechanical properties: a high-hardness and high Young's modulus titaniµm-silicon target (TiSi) combined with alµminµm-chromiµm-molybdenµm (AlCrMo), known for its wear resistance and oxidation resistance. Using cathodic arc evaporation (CAE), multilayer TiSiN/AlCrMoN films with a periodic ratio of 1:1 were prepared. These films underwent room temperature scratch, wear, and dynamic impact tests, as well as 500°C dynamic impact tests. The microstructure of the films was analyzed after vacuµm annealing at 500°C for one hour, two hours, four hours, and at 800°C, 900°C, and 1000°C for one hour to observe the correlation between hardness and phase changes under vacuµm conditions. The three types of films in their deposited state, observed under SEM and TEM, all exhibited a distinct colµmnar crystal structure with a tetragonal FCC Na-Cl structure. The hardness of the single-layer TiSiN film was 41.99±0.65 GPa, the single-layer AlCrMoN film had a hardness of 29.18±0.86 GPa, and the multilayer TiSiN/AlCrMoN film had a hardness of 35.57±0.2 GPa with the smallest grain size. The TiSiN film exhibited residual stress due to the significant hardness difference between the top and interlayers, leading to early film cracks (Lc2) and film delamination (Lc3) in the scratch adhesion test. The AlCrMoN and TiSiN/AlCrMoN films, due to their lower hardness and residual stress, demonstrated better adhesion in the scratch test, with Lc2 only observed at the 100N position. In the room temperature ball-on-disk test, the TiSiN film failed due to its high hardness and residual stress, with rutile phase TiO2 forming during processing, increasing the friction coefficient and wear rate, and feather-like brittle cracks appearing around the track. The AlCrMoN film showed no significant cracks around the processing track and had more oxide accµmulations, with Al2O3 and Cr2O3 wear debris effectively reducing the friction coefficient and wear rate. In the fatigue impact test, the TiSiN film failed due to structural dislocation caused by shear stress around the indentation from colµmnar crystals and high residual stress. The AlCrMoN film, due to its poor resistance to plastic deformation, failed due to cohesive failure in the central area of the film. The multilayer TiSiN/AlCrMoN film showed the least impact on depth and width after fatigue impact. XPS depth analysis of room temperature and 500°C specimens compared the oxidation depth and oxide elements of the films. The single-layer TiSiN and AlCrMoN films, due to their single-layer and coarse colµmnar crystal structures, were easily damaged by impacts, allowing oxygen to penetrate the films. The multilayer TiSiN/AlCrMoN film's multilayer structure enhanced grain boundary strengthening, reducing dislocation and grain size, making the film structure denser, improving resistance to plastic deformation and high-temperature oxidation. A silica layer formed on the surface, acting as a thermal barrier and completely preventing further oxidation of the film, providing the best high-temperature fatigue impact resistance. In the vacuµm thermal stability experiment, XRD and nanoindentation analysis showed that the decomposition temperature of the SiNx phase in the single-layer TiSiN film was above 900°C for one hour, causing a decrease in hardness, but the hardness and microstructure did not change after annealing at 1000°C for one hour. The single-layer AlCrMoN film decomposed into hexagonal w-AlN and h-Cr2N phases at 900°C for four hours and 1000°C, significantly reducing its hardness. The multilayer TiSiN/AlCrMoN film's structure, strengthened by multilayer stacking, prevented dislocation. At 900°C vacuµm annealing for one hour, the first spinodal decomposition increased hardness, and the phase decomposition temperature was delayed at 900°C for four hours, maintaining hardness. At 1000°C for one hour, the second spinodal decomposition occurred, reducing hardness..
563
$a
(平裝)
650
# 4
$a
thermal stability.
$3
1011291
650
# 4
$a
wear resistance.
$3
1061657
650
# 4
$a
hard film.
$3
1454607
650
# 4
$a
熱穩定性.
$3
1011296
650
# 4
$a
耐磨耗性.
$3
1062065
650
# 4
$a
硬質薄膜.
$3
1025583
856
7 #
$u
https://handle.ncl.edu.tw/11296/jes8yu
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013369
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.120M 4662 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入