Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 = = Aerod...
~
李承詮
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 = = Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 =/ 李承詮.
Reminder of title:
Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /
remainder title:
Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV.
Author:
李承詮
Published:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
Description:
[15], 87面 :圖, 表 ; : 30公分.;
Notes:
指導教授: 鄭仁杰.
Subject:
垂直起降. -
Online resource:
電子資源
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 = = Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /
李承詮
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 =
Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV.李承詮. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [15], 87面 :圖, 表 ;30公分.
指導教授: 鄭仁杰.
碩士論文--國立虎尾科技大學飛機工程系航空與電子科技碩士班.
含參考書目.
本文目標設計一架具有長航程與長滯空時間之條件垂直起降固定翼無人機,最大航程可達800公里,滯空作業時間可達8小時以上,設計需求為最大起飛重量為60公斤以下且包含6公斤payload。搭配裝置於VTOL飛行載具上之光學攝像儀及感測器等等,具備快速搜索地區的能力。 本文首先依據任務目標進行sizing,預估出初步空氣動力、推進動力及燃油重量需求,再逐步對各部件外型進行設計與分析探討,最後將完成之全機模型以數值模擬進行氣動力分析。機翼部分進行翼型、展弦比、漸縮比及翼尖分析,探討不同機翼設計之氣動力參數變化。機身設計五種不同比例,探討機艙空間因素及氣動力性能因素之影響。尾翼探討四種不同形式之尾翼,以及計算尾翼容積效率。VTOL四旋翼部分以具備120kg升力 (安全係數2)及持續飛行20分鐘為設計條件,挑選出市場上已有之馬達、螺旋槳及所需電池容量。 完成之全機模型機翼使用MH139翼型,展弦比為11.11,機翼安裝角度為4度及採用H型尾翼。執行氣動力性能分析結果顯示,在海拔高度1000公尺及速度30m/s條件下,平飛升力可達到730N,足夠支撐本文之設計最大起飛重量60kg。飛行之航程為1678km及滯空時間至少9小時,皆超過設計最大航程及滯空時間之需求。同時繪製飛行包絡線,海平面時失速速度為20 m/s,最大速度為40.84 m/s,升限為8000m。 本文亦對無人機之安控性能進行探討,分析結果為CMα<0、Cnβ>0、Clβ<0,因此得知本文設計之VTOL UAV同時具有縱向安定、航向安定及橫向安定性。控制面的大小比例分別是副翼與主翼面積比值為10.6%,方向舵與垂直尾翼面積比值為23.44%,升降舵與水平尾翼面積比值為25.9%,並將數據匯入X-plane 6D飛行模擬軟體驗證其操縱性能。.
(平裝)Subjects--Topical Terms:
998405
垂直起降.
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 = = Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /
LDR
:05668cam a2200241 i 4500
001
1129874
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0294006
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.153M
$b
4010 113
$2
ncsclt
100
1
$a
李承詮
$3
1448918
245
1 0
$a
中型油電混合動力垂直起降固定翼無人機氣動力分析與設計 =
$b
Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV /
$c
李承詮.
246
1 1
$a
Aerodynamic analysis and design of medium-size hybrid vertical take-off and landing fixed-wing UAV.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[15], 87面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 鄭仁杰.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學飛機工程系航空與電子科技碩士班.
504
$a
含參考書目.
520
3
$a
本文目標設計一架具有長航程與長滯空時間之條件垂直起降固定翼無人機,最大航程可達800公里,滯空作業時間可達8小時以上,設計需求為最大起飛重量為60公斤以下且包含6公斤payload。搭配裝置於VTOL飛行載具上之光學攝像儀及感測器等等,具備快速搜索地區的能力。 本文首先依據任務目標進行sizing,預估出初步空氣動力、推進動力及燃油重量需求,再逐步對各部件外型進行設計與分析探討,最後將完成之全機模型以數值模擬進行氣動力分析。機翼部分進行翼型、展弦比、漸縮比及翼尖分析,探討不同機翼設計之氣動力參數變化。機身設計五種不同比例,探討機艙空間因素及氣動力性能因素之影響。尾翼探討四種不同形式之尾翼,以及計算尾翼容積效率。VTOL四旋翼部分以具備120kg升力 (安全係數2)及持續飛行20分鐘為設計條件,挑選出市場上已有之馬達、螺旋槳及所需電池容量。 完成之全機模型機翼使用MH139翼型,展弦比為11.11,機翼安裝角度為4度及採用H型尾翼。執行氣動力性能分析結果顯示,在海拔高度1000公尺及速度30m/s條件下,平飛升力可達到730N,足夠支撐本文之設計最大起飛重量60kg。飛行之航程為1678km及滯空時間至少9小時,皆超過設計最大航程及滯空時間之需求。同時繪製飛行包絡線,海平面時失速速度為20 m/s,最大速度為40.84 m/s,升限為8000m。 本文亦對無人機之安控性能進行探討,分析結果為CMα<0、Cnβ>0、Clβ<0,因此得知本文設計之VTOL UAV同時具有縱向安定、航向安定及橫向安定性。控制面的大小比例分別是副翼與主翼面積比值為10.6%,方向舵與垂直尾翼面積比值為23.44%,升降舵與水平尾翼面積比值為25.9%,並將數據匯入X-plane 6D飛行模擬軟體驗證其操縱性能。.
520
3
$a
In this paper, aims to design a vertical takeoff and landing (VTOL) fixed-wing unmanned aerial vehicle (UAV) that meets the conditions of long range and endurance. The maximum range is up to 800 kilometers, and the endurance can exceed 8 hours, with a maximum takeoff weight of 60 kilograms including 6-kilogram payload. The UAV will be equipped with optical cameras and sensors on the VTOL UAV, enabling rapid search capabilities in designated areas. This paper first conducts sizing based on the mission objectives to estimate the preliminary requirements for aerodynamics, propulsion, and fuel weight. It then progressively designs and analyzes the shape of each component. Finally, the complete aircraft model is subjected to aerodynamic analysis through numerical simulations. For the wing section, analyses are performed on airfoil types, aspect ratio, taper ratio, and wingtip configurations to explore the variations in aerodynamic parameters with different wing designs. The fuselage is designed in five different proportions to examine the impact of cabin space and aerodynamic performance factors. The tail is analyzed in four different configurations, and tail volume efficiency is calculated. For the VTOL quadcopter, design conditions include a lift capacity of 120 kg (with a safety factor of 2) and continuous flight for 20 minutes. Existing motors, propellers, and required battery capacity are selected from the market. The completed aircraft model features MH139 airfoils with an aspect ratio of 11.11, a wing installation angle of 4 degrees, and an H-type tail. The aerodynamic performance analysis shows that at an altitude of 1000 m and a speed of 30 m/s, level flight lift can reach 730 N, which is sufficient to support the maximum takeoff weight of 60 kg for this design. The flight range is 1678 km, and the endurance time is at least 9 hours, both exceeding the design requirements for maximum range and endurance time. Additionally, the flight envelope is plotted, with a stall speed of 20 m/s at sea level, a maximum speed of 40.84 m/s, and a ceiling of 8000 meters. This paper also explores the stability and control performance of the UAV. The analysis results show CMα < 0, Cnβ > 0, and Clβ < 0, indicating that the designed VTOL UAV possesses longitudinal stability, directional stability, and lateral stability. The size ratios of the control surfaces are as follows: the ailerons to main wing area ratio is 10.6%, the rudder to vertical tail area ratio is 23.44%, and the elevator to horizontal tail area ratio is 25.9%. These data are then imported into the X-plane 6D flight simulation software to verify its handling performance..
563
$a
(平裝)
650
# 4
$a
垂直起降.
$3
998405
650
# 4
$a
無人機.
$3
1137693
650
# 4
$a
飛機設計.
$3
1218077
650
# 4
$a
氣動力性能.
$3
1420475
650
# 4
$a
安控性能.
$3
1450810
650
# 4
$a
vertical takeoff and landing.
$3
1450811
650
# 4
$a
unmanned aerial vehicle.
$3
1003952
650
# 4
$a
aircraft design.
$3
1218084
650
# 4
$a
flight performance.
$3
1383750
650
# 4
$a
stability and control.
$3
1383751
856
7 #
$u
https://handle.ncl.edu.tw/11296/b2meef
$z
電子資源
$2
http
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T013199
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.153M 4010 113
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login