Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
基於神經網路整合機械手臂之自動化手眼校正系統 = = Automatic...
~
郭承諭
基於神經網路整合機械手臂之自動化手眼校正系統 = = Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
基於神經網路整合機械手臂之自動化手眼校正系統 =/ 郭承諭.
Reminder of title:
Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /
remainder title:
Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration.
Author:
郭承諭
Published:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
Description:
[13], 77面 :圖, 表 ; : 30公分.;
Notes:
指導教授: 張文陽.
Subject:
手眼校正. -
Online resource:
電子資源
基於神經網路整合機械手臂之自動化手眼校正系統 = = Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /
郭承諭
基於神經網路整合機械手臂之自動化手眼校正系統 =
Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration.郭承諭. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [13], 77面 :圖, 表 ;30公分.
指導教授: 張文陽.
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
含參考書目.
隨著智慧製造和工業自動化的快速發展,機械手臂在各行各業的應用越來越廣泛。機械手臂能夠高速執行精確且重複性的任務,因此被廣泛應用於製造業生產線中,大幅提高了生產效率,並提高了產品品質的穩定性和製造流程的一致性,然而,在實際應用中,機械手臂的精確操作需要依賴於手眼校正技術。手眼校正是機械手臂應用中的關鍵步驟,主要是確定相機與機械手臂之間的空間關係,以便精確控制手臂的運動。傳統的手眼校正方法通常需要手動操作,過程繁瑣且費時,並且容易因人為操作錯誤而導致校正結果不準確,這種方法對於現代工業中需要高效的自動化流程來說顯得不夠理想,因此,本研究開發了一種利用神經網路整合機械手臂之自動化手眼校正系統,整合了OpenCV、C#及神經網路,使用Eye-In-Hand的手眼校正方法,即相機安裝於手臂上,以確定相機與機械手臂之間的空間關係。此系統利用神經網路建立訓練模型,並採用辨識結果高達98%的Separated_Enhanced模型,來辨識棋盤格和各角位的相對位置,系統會藉由輸出最近角位的結果,讓手臂移動至該角位上方拍攝10張不同角度的照片,最後輸出拍攝結果完成手眼校正,整個過程只需按下一個按鈕即可完成,操作簡便且高效,這不僅減少了人為操作錯誤的可能性,還大幅提高了校正的速度和準確性,系統的自動化特性顯著減少了操作人員的工作負擔,使得手眼校正過程更加簡單和高效。最後,本研究探討了自動手眼校正的穩定性,分析需要拍攝多少張校正板的照片,才能讓手眼校正的結果達到穩定,並且在不同的位置校正後,觀察相機內部參數和畸變參數的標準偏差。此外,還對機械手臂和相機的姿態校正進行測試,其結果平均誤差X方向為6.67mm,Y方向為3.37mm,最終可以透過自動手眼校正的方法得知整體誤差值為5.02mm。.
(平裝)Subjects--Topical Terms:
1453957
手眼校正.
基於神經網路整合機械手臂之自動化手眼校正系統 = = Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /
LDR
:05865cam a2200241 i 4500
001
1129920
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0689033
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.120M
$b
0710 113
$2
ncsclt
100
1
$a
郭承諭
$3
1448960
245
1 0
$a
基於神經網路整合機械手臂之自動化手眼校正系統 =
$b
Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration /
$c
郭承諭.
246
1 1
$a
Automatically Calibrated Hand-Eye System for Robotic Arms Based on Neural Network Integration.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[13], 77面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 張文陽.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
504
$a
含參考書目.
520
3
$a
隨著智慧製造和工業自動化的快速發展,機械手臂在各行各業的應用越來越廣泛。機械手臂能夠高速執行精確且重複性的任務,因此被廣泛應用於製造業生產線中,大幅提高了生產效率,並提高了產品品質的穩定性和製造流程的一致性,然而,在實際應用中,機械手臂的精確操作需要依賴於手眼校正技術。手眼校正是機械手臂應用中的關鍵步驟,主要是確定相機與機械手臂之間的空間關係,以便精確控制手臂的運動。傳統的手眼校正方法通常需要手動操作,過程繁瑣且費時,並且容易因人為操作錯誤而導致校正結果不準確,這種方法對於現代工業中需要高效的自動化流程來說顯得不夠理想,因此,本研究開發了一種利用神經網路整合機械手臂之自動化手眼校正系統,整合了OpenCV、C#及神經網路,使用Eye-In-Hand的手眼校正方法,即相機安裝於手臂上,以確定相機與機械手臂之間的空間關係。此系統利用神經網路建立訓練模型,並採用辨識結果高達98%的Separated_Enhanced模型,來辨識棋盤格和各角位的相對位置,系統會藉由輸出最近角位的結果,讓手臂移動至該角位上方拍攝10張不同角度的照片,最後輸出拍攝結果完成手眼校正,整個過程只需按下一個按鈕即可完成,操作簡便且高效,這不僅減少了人為操作錯誤的可能性,還大幅提高了校正的速度和準確性,系統的自動化特性顯著減少了操作人員的工作負擔,使得手眼校正過程更加簡單和高效。最後,本研究探討了自動手眼校正的穩定性,分析需要拍攝多少張校正板的照片,才能讓手眼校正的結果達到穩定,並且在不同的位置校正後,觀察相機內部參數和畸變參數的標準偏差。此外,還對機械手臂和相機的姿態校正進行測試,其結果平均誤差X方向為6.67mm,Y方向為3.37mm,最終可以透過自動手眼校正的方法得知整體誤差值為5.02mm。.
520
3
$a
With the rapid development of smart manufacturing and industrial automation, robotic arms are increasingly being applied across various industries. Robotic arms can perform precise and repetitive tasks at high speeds, thus they are widely used in manufacturing production lines, significantly improving production efficiency, and enhancing the stability of product quality and consistency of manufacturing processes. However, in practical applications, the precise operation of robotic arms relies on hand-eye calibration technology. Hand-eye calibration is a crucial step in the application of robotic arms, mainly to determine the spatial relationship between the camera and the robotic arm, allowing for precise control of the arm's movements. Traditional hand-eye calibration methods usually require manual operation, which is cumbersome, time-consuming, and prone to human error, leading to inaccurate calibration results. This approach is not ideal for modern industry, which demands highly efficient automated processes. Therefore, this study developed an automated hand-eye calibration system for robotic arms using neural network integration, incorporating OpenCV, C#, and neural networks. The system employs the Eye-In-Hand calibration method, where the camera is mounted on the robotic arm, to determine the spatial relationship between the camera and the robotic arm. This system uses a neural network to build a training model and adopts the Separated_Enhanced model with a recognition accuracy of up to 98% to identify the checkerboard and the relative positions of the corners. The system outputs the nearest corner's result, allowing the arm to move above this corner and take 10 photos from different angles. The calibration process is completed by outputting the results of the photos, and the entire process requires only the press of a single button, making the operation simple and efficient. This not only reduces the possibility of human error but also significantly improves the speed and accuracy of calibration. The system's automation greatly reduces the workload of operators, making the hand-eye calibration process simpler and more efficient. Finally, this study explored the stability of automated hand-eye calibration, analyzing the number of checkerboard photos needed to achieve stable calibration results. The study also observed the standard deviation of internal camera parameters and distortion parameters after calibration at different positions. In addition, the pose calibration of the robotic arm and the camera was tested, with results showing an average error of 6.67mm in the X direction and 3.37mm in the Y direction. Ultimately, through the automated hand-eye calibration method, the overall error value was found to be 5.02mm..
563
$a
(平裝)
650
# 4
$a
手眼校正.
$3
1453957
650
# 4
$a
機械手臂.
$3
1020652
650
# 7
$a
自動化.
$2
lcstt
$3
844386
650
# 7
$a
神經網路.
$2
lcstt
$3
832902
650
# 4
$a
Hand-Eye Calibration.
$3
1453958
650
# 4
$a
Robotic Arm.
$3
1339670
650
# 4
$a
Automation.
$3
596698
650
# 4
$a
Neural Network.
$3
998212
856
7 #
$u
https://handle.ncl.edu.tw/11296/c3upyx
$z
電子資源
$2
http
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T013354
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.120M 0710 113
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login