語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
磨床機械結構仿生設計之輕量化與剛性提升分析 = = Analyses o...
~
賴彥廷
磨床機械結構仿生設計之輕量化與剛性提升分析 = = Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
磨床機械結構仿生設計之輕量化與剛性提升分析 =/ 賴彥廷.
其他題名:
Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /
其他題名:
Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure.
作者:
賴彥廷
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
面頁冊數:
[9], 99面 :圖, 表 ; : 30公分.;
附註:
指導教授: 林盛勇.
標題:
模態分析. -
電子資源:
電子資源
磨床機械結構仿生設計之輕量化與剛性提升分析 = = Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /
賴彥廷
磨床機械結構仿生設計之輕量化與剛性提升分析 =
Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure.賴彥廷. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [9], 99面 :圖, 表 ;30公分.
指導教授: 林盛勇.
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
含參考書目.
隨著全球製造業面臨能源成本上升和環保壓力,工具機設計趨勢正朝向輕量化和高剛性發展。過去透過增加部件尺寸或加強肋板設計來提升機台剛性的方法,雖能提升機台性能,但也會增加重量,這與當前追求高效能及環保的目標相抵觸。尤其是在高速加工技術日益發展的背景下,機台的結構剛性和減振能力成為提升加工精度和延長機台使用壽命的關鍵因素。因此,如何在保持或提升結構剛性的同時實現部件的輕量化成為研究的重要課題。 本研究採用創新的仿生設計方法,從自然界的葉脈、仙人掌與竹子結構中獲得靈感,結合這些生物結構特點進行結構設計,以達到剛性提升與重量減輕的雙重目標。首先使用Ansys軟體對磨床機械結構進行靜力和模態分析,模擬工具機在實際操作狀態下的動態行為,確定最大變形量和自然頻率,以進行優化設計。同時透過調整磨床介面剛性,促使數值模態分析與實驗結果相符合。本仿生設計將葉脈、仙人掌與竹子的結構特徵應用於工具機重要部件的設計中,進而提高剛性和減輕重量。在工作台的設計中,結合單獨的葉脈結構、單獨的仙人掌結構及其二者的結合,葉脈的結構可提供均勻的負荷分佈。結果顯示,仿生工作台的前三階自然頻率最大提升7.07%,重量減輕1.12%。在底座的設計中,仙人掌與竹子結構的結合、葉脈與竹子結構的結合以及單獨的葉脈仿生肋板之間的比較。結果顯示,仿生底座的自然頻率最大提升13.21%,重量減輕1.71%。立柱的設計中包含單獨葉脈結構、單獨竹子節點結構及仙人掌與竹子結合的結構,竹子節點具有抗壓能力,可應用於立柱內部肋骨配置,以提高剛性和減少重量。結果顯示,仿生立柱的自然頻率最大提升5.58%,重量減輕0.14%。 仿生設計後透過模態及靜力分析,改善後的整機前三階自然頻率皆有提升,最高達到14.56%,重量減輕1.25%,最大變形量降低39.64%,頭座的變形量也降低了26.95%。底座、工作台和立柱的比剛度分別提升35.58%、67.55%和7.07%。本研究透過結構仿生設計,不僅在理論上提供新的設計思路,也在實踐中展示其應用價值,有效地提升磨床機械結構的輕量化和剛性,為未來的工具機設計提供創新方法。.
(平裝)Subjects--Topical Terms:
998340
模態分析.
磨床機械結構仿生設計之輕量化與剛性提升分析 = = Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /
LDR
:07183cam a2200241 i 4500
001
1129949
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0689028
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.120M
$b
5701:2 113
$2
ncsclt
100
1
$a
賴彥廷
$3
1448987
245
1 0
$a
磨床機械結構仿生設計之輕量化與剛性提升分析 =
$b
Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure /
$c
賴彥廷.
246
1 1
$a
Analyses of Lightweight and Stiffness Enhancement in Biomimetic Design of a Grinding Machine Structure.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[9], 99面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 林盛勇.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
504
$a
含參考書目.
520
3
$a
隨著全球製造業面臨能源成本上升和環保壓力,工具機設計趨勢正朝向輕量化和高剛性發展。過去透過增加部件尺寸或加強肋板設計來提升機台剛性的方法,雖能提升機台性能,但也會增加重量,這與當前追求高效能及環保的目標相抵觸。尤其是在高速加工技術日益發展的背景下,機台的結構剛性和減振能力成為提升加工精度和延長機台使用壽命的關鍵因素。因此,如何在保持或提升結構剛性的同時實現部件的輕量化成為研究的重要課題。 本研究採用創新的仿生設計方法,從自然界的葉脈、仙人掌與竹子結構中獲得靈感,結合這些生物結構特點進行結構設計,以達到剛性提升與重量減輕的雙重目標。首先使用Ansys軟體對磨床機械結構進行靜力和模態分析,模擬工具機在實際操作狀態下的動態行為,確定最大變形量和自然頻率,以進行優化設計。同時透過調整磨床介面剛性,促使數值模態分析與實驗結果相符合。本仿生設計將葉脈、仙人掌與竹子的結構特徵應用於工具機重要部件的設計中,進而提高剛性和減輕重量。在工作台的設計中,結合單獨的葉脈結構、單獨的仙人掌結構及其二者的結合,葉脈的結構可提供均勻的負荷分佈。結果顯示,仿生工作台的前三階自然頻率最大提升7.07%,重量減輕1.12%。在底座的設計中,仙人掌與竹子結構的結合、葉脈與竹子結構的結合以及單獨的葉脈仿生肋板之間的比較。結果顯示,仿生底座的自然頻率最大提升13.21%,重量減輕1.71%。立柱的設計中包含單獨葉脈結構、單獨竹子節點結構及仙人掌與竹子結合的結構,竹子節點具有抗壓能力,可應用於立柱內部肋骨配置,以提高剛性和減少重量。結果顯示,仿生立柱的自然頻率最大提升5.58%,重量減輕0.14%。 仿生設計後透過模態及靜力分析,改善後的整機前三階自然頻率皆有提升,最高達到14.56%,重量減輕1.25%,最大變形量降低39.64%,頭座的變形量也降低了26.95%。底座、工作台和立柱的比剛度分別提升35.58%、67.55%和7.07%。本研究透過結構仿生設計,不僅在理論上提供新的設計思路,也在實踐中展示其應用價值,有效地提升磨床機械結構的輕量化和剛性,為未來的工具機設計提供創新方法。.
520
3
$a
As global manufacturing faces rising energy costs and environmental pressures, the design trends of machine tools are moving towards lightweight structures and high rigidity. Traditionally, increasing key component size or enhancing rib design were common methods to improve machine rigidity. While these approaches do enhance performance, they also increase weight, which conflicts with the current goals of achieving high efficiency and environmental sustainability. Particularly in the context of the growing development of high-speed machining technology, the structural rigidity and vibration damping capacity of machine tools have become critical factors in improving machining accuracy and extending the service life of the equipment. Therefore, how to achieve component lightweight while maintaining or enhancing structural rigidity has become a key area of research. This study employs an innovative biomimetic design approach, drawing inspiration from the structures of leaf veins, cacti, and bamboo found in nature. By integrating these biological structural characteristics, the design aims to achieve the dual objectives of enhancing rigidity and reducing weight. Initially, Ansys software was used to conduct static and modal analyses of the grinding machine's mechanical structure, simulating the machine's dynamic behavior under actual operating conditions to determine the maximum deformation and natural frequencies for optimization. Additionally, the interface rigidity of the grinding machine was adjusted to match the numerical modal analysis with experimental results. The biomimetic design applied the structural features of leaf veins, cacti, and bamboo to key components of the machine-tool, thereby increasing rigidity and reducing weight. In the worktable design, combinations of individual leaf vein structures, individual cactus structures, and their combinations were explored, with the leaf vein structure providing uniform load distribution. The results showed that the first three natural frequencies of the bionic worktable increased by up to 7.07%, while the weight was reduced by 1.12%. In the base design, comparisons were made between the combinations of cactus and bamboo structures, leaf vein and bamboo structures, and an individual leaf vein bionic rib structure. The results demonstrated that the natural frequencies of the bionic base increased by up to 13.21%, while the weight was reduced by 1.71%. The column design included individual leaf vein structures, individual bamboo joint structures, and a combination of cactus and bamboo structures. Bamboo joint, known for their compressive strength, were applied to the internal rib configuration of the column to enhance rigidity and reduce weight. The results indicated that the natural frequencies of the bionic column increased by up to 5.58%, while the weight was reduced by 0.14%. After applying biomimetic design, the static and modal analyses revealed improvements in the machine's overall performance. The first three natural frequencies of the entire machine-tool increased by up to 14.56%, accompanied by a 1.25% reduction in weight, and the maximum deformation decreased by 39.64%, while the deformation of the headstock was also reduced by 26.95%. The specific stiffness of the base, worktable, and column improved by 35.58%, 67.55%, and 7.07%, respectively. This study not only provides a new theoretical approach through structural biomimetic design but also demonstrates its practical application value, effectively enhancing the lightweight and rigidity of the grinding machine's mechanical structure. It offers an innovative method for future machine-tool design..
563
$a
(平裝)
650
# 4
$a
模態分析.
$3
998340
650
# 4
$a
靜力分析.
$3
1128588
650
# 4
$a
介面剛性.
$3
1219392
650
# 4
$a
結構剛性.
$3
1083557
650
# 4
$a
仿生設計.
$3
1453983
650
# 4
$a
Modal Analysis.
$3
1128497
650
# 4
$a
Static Analysis.
$3
1407622
650
# 4
$a
Interface Stiffness.
$3
1340004
650
# 4
$a
Structural Rigidity.
$3
1453984
650
# 4
$a
Biomimetic Design.
$3
1453985
856
7 #
$u
https://handle.ncl.edu.tw/11296/9r89x4
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013359
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.120M 5701:2 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入