語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測...
~
彭宏宣
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 = = Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 =/ 彭宏宣.
其他題名:
Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /
其他題名:
Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling.
作者:
彭宏宣
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
面頁冊數:
[8], 65面 :圖, 表 ; : 30公分.;
附註:
指導教授: 林盛勇 .
標題:
超音波輔助. -
電子資源:
電子資源
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 = = Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /
彭宏宣
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 =
Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling.彭宏宣. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [8], 65面 :圖, 表 ;30公分.
指導教授: 林盛勇 .
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
含參考書目.
SKD11合金工具鋼是一種高碳高鉻合金工具鋼,這種鋼材經過熱處理後,硬度可達到HRC58-62,亦即它具有高強度、高硬度、高韌性、表面抗磨耗能力、較高的疲勞強度和抗變形等優越特性,在工業中,主要廣泛應用於製造沖壓模、塑膠模等多種模具。 超音波輔助銑削顯著改善表面粗糙度並減少切削力,但大多數研究僅集中於特定參數。此外,傳統的冷卻方法在提升加工效率和延長刀具壽命方面有其侷限性,特別是在高速切削條件下,冷卻效果難以應對加工過程中產生的大量熱量和摩擦。本研究透過綜合評估不同輔助和冷卻方式,制定更有效的切削策略。並利用超音波輔助的高頻振動與微小振幅產生的泵吸作用與中心出水冷卻精準噴射且吸入於主切削區域的特性相結合,達到更佳的冷卻與潤滑效果,為提升SKD11的切削性能開闢了新的思路。 本文研究不同輔助方式對SKD11銑削性能的影響,並找出較佳的輔助方式和切削參數。首先進行不同超音波輔助方式的比較,包括Z軸超音波、XY軸超音波和XYZ三軸超音波,並比較乾切削、外部冷卻和中心出水等不同的冷卻方式。實驗結果顯示,結合較佳的超音波輔助和冷卻方式能顯著提升切削性能並減少切削過程中的熱量產生。接著,運用田口法進行銑削實驗,選定較佳的超音波輔助、冷却方式以及切削製程參數。結果顯示,使用Z軸超音波輔助時,無論是在小切削深度低進給率還是大切削深度高進給率的情況下,均能顯著改善表面粗糙度,表面粗糙度比無輔助條件下降20%-31%。此外,中心出水冷卻方式能直接將冷卻液輸送至切削區域,有效降低切削溫度,並透過其高壓冷卻液打斷硬化後的切屑,促進其快速排出,進而大幅度改善表面粗糙度,與乾切削相比,其表面粗糙度降低15%-28%。 在本文應用多種機器學習模型,包括決策樹、隨機森林、支持向量機等8種基本分類模型,來預測刀具不同階段的磨耗。AdaBoost模型在眾多模型中表現最佳,顯示預測的準確性。最後,透過集成學習投票法的應用顯示,透過多模型的結合可以進一步提升預測精確度,為製造業提供更為穩定和高效的刀具管理方案。.
(平裝)Subjects--Topical Terms:
1049621
超音波輔助.
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 = = Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /
LDR
:07000cam a2200241 i 4500
001
1129950
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0689019
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$c
hi
$b
chi
$b
eng
084
$a
008.120M
$b
4233 113
$2
ncsclt
100
1
$a
彭宏宣
$3
1448988
245
1 0
$a
超音波輔助銑削SKD11模具鋼施以中心出水冷卻切削性能分析及刀具磨耗預測模型之建立 =
$b
Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling /
$c
彭宏宣.
246
1 1
$a
Cutting Performance Analysis and Cutting-Tool Wear Prediction Model Construction for SKD11 Steel Milling under Ultrasonic Assistance and Internal Cooling.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[8], 65面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 林盛勇 .
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學機械與電腦輔助工程系碩士班.
504
$a
含參考書目.
520
3
$a
SKD11合金工具鋼是一種高碳高鉻合金工具鋼,這種鋼材經過熱處理後,硬度可達到HRC58-62,亦即它具有高強度、高硬度、高韌性、表面抗磨耗能力、較高的疲勞強度和抗變形等優越特性,在工業中,主要廣泛應用於製造沖壓模、塑膠模等多種模具。 超音波輔助銑削顯著改善表面粗糙度並減少切削力,但大多數研究僅集中於特定參數。此外,傳統的冷卻方法在提升加工效率和延長刀具壽命方面有其侷限性,特別是在高速切削條件下,冷卻效果難以應對加工過程中產生的大量熱量和摩擦。本研究透過綜合評估不同輔助和冷卻方式,制定更有效的切削策略。並利用超音波輔助的高頻振動與微小振幅產生的泵吸作用與中心出水冷卻精準噴射且吸入於主切削區域的特性相結合,達到更佳的冷卻與潤滑效果,為提升SKD11的切削性能開闢了新的思路。 本文研究不同輔助方式對SKD11銑削性能的影響,並找出較佳的輔助方式和切削參數。首先進行不同超音波輔助方式的比較,包括Z軸超音波、XY軸超音波和XYZ三軸超音波,並比較乾切削、外部冷卻和中心出水等不同的冷卻方式。實驗結果顯示,結合較佳的超音波輔助和冷卻方式能顯著提升切削性能並減少切削過程中的熱量產生。接著,運用田口法進行銑削實驗,選定較佳的超音波輔助、冷却方式以及切削製程參數。結果顯示,使用Z軸超音波輔助時,無論是在小切削深度低進給率還是大切削深度高進給率的情況下,均能顯著改善表面粗糙度,表面粗糙度比無輔助條件下降20%-31%。此外,中心出水冷卻方式能直接將冷卻液輸送至切削區域,有效降低切削溫度,並透過其高壓冷卻液打斷硬化後的切屑,促進其快速排出,進而大幅度改善表面粗糙度,與乾切削相比,其表面粗糙度降低15%-28%。 在本文應用多種機器學習模型,包括決策樹、隨機森林、支持向量機等8種基本分類模型,來預測刀具不同階段的磨耗。AdaBoost模型在眾多模型中表現最佳,顯示預測的準確性。最後,透過集成學習投票法的應用顯示,透過多模型的結合可以進一步提升預測精確度,為製造業提供更為穩定和高效的刀具管理方案。.
520
3
$a
SKD11 alloy tool steel is a high-carbon, high-chromium alloy tool steel. After heat treatment, this material can achieve a hardness of HRC58-62, meaning it possesses excellent properties such as high strength, high hardness, high toughness, surface wear resistance, high fatigue strength, and resistance to deformation. In the industry, it is widely used in the manufacturing of various molds, including stamping dies and plastic molds. Ultrasonic-assisted milling significantly improves surface roughness and reduces cutting force, but most studies have focused only on specific parameters. In addition, traditional cooling methods have limitations in improving machining efficiency and extending tool life, especially under high-speed cutting conditions, where cooling efficiency is insufficient to handle the large amounts of heat and friction generated during the processes. This study comprehensively evaluates different assisted-machining and cooling methods to develop more effective cutting strategies. By combining the pumping effect generated by high-frequency vibrations and small amplitudes in ultrasonic assistance with the precise injection and suction characteristics of internal cooling in the main cutting area, better cooling and lubrication effects are achieved, opening new avenues for enhancing the cutting performance of SKD11. This paper investigates the effects of different assisted methods on the milling performance of SKD11 and identifies the optimal assisted methods and cutting parameters. First, a comparison of different ultrasonic assisted methods was conducted, including Z-axis ultrasonic, XY-axis ultrasonic, and XYZ three-axis ultrasonic, along with a comparison of dry cutting, external cooling, and internal cooling. The experimental results show that combination of the optimal ultrasonic assistance and cooling methods can significantly improve cutting performance and reduce heat generation during the cutting processes. Subsequently, the Taguchi method was used to conduct milling experiments, by selecting the better ultrasonic assistance, cooling methods, and cutting process parameters. The results show that using Z-axis ultrasonic assistance, whether at low feed rates with small cutting depths or high feed rates with large cutting depths, can significantly improve the surface roughness, reducing surface roughness by 20%-31% compared to conditions without assistance. Additionally, the internal cooling method can directly deliver coolant to the primary cutting area, effectively reducing cutting temperature and constituting brittle chip. These chips may be broken off via the impact of high-pressure coolant, promoting their rapid removal from the workpiece, which in turn greatly improves surface roughness. Compared to dry cutting, surface roughness is reduced by 15%-28%. In this paper, various machine learning models, including decision trees, random forests, support vector machines, and other basic classification models, are applied to predict tool wear at different stages during the milling processes. The AdaBoost model performed the best among the other models, showing the highest prediction accuracy. Finally, the application of ensemble learning voting demonstrated that the integration multiple models can further improve prediction accuracy, providing the manufacturing industry with a more stable and efficient tool management solution..
563
$a
(平裝)
650
# 4
$a
超音波輔助.
$3
1049621
650
# 4
$a
中心出水冷卻.
$3
1454229
650
# 4
$a
機器學習.
$3
995923
650
# 4
$a
刀具磨耗.
$3
996231
650
# 4
$a
集成學習.
$3
1407373
650
# 4
$a
SKD11.
$3
1175762
650
# 4
$a
Ultrasonic Assistance.
$3
1454230
650
# 4
$a
Internal cooling.
$3
1454231
650
# 4
$a
Machine Learning.
$3
1137723
650
# 4
$a
Tool Wear.
$3
1454232
650
# 4
$a
Ensemble Learning.
$3
1416172
856
7 #
$u
https://handle.ncl.edu.tw/11296/6mrx6c
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013368
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.120M 4233 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入