語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 = = Stud...
~
陳嘉晉
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 = = Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 =/ 陳嘉晉.
其他題名:
Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /
其他題名:
Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission.
作者:
陳嘉晉
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
面頁冊數:
[12], 107面 :圖, 表 ; : 30公分.;
附註:
指導教授: 張益新.
標題:
螢光粉. -
電子資源:
電子資源
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 = = Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /
陳嘉晉
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 =
Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission.陳嘉晉. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [12], 107面 :圖, 表 ;30公分.
指導教授: 張益新.
碩士論文--國立虎尾科技大學電子工程系碩士班.
含參考書目.
本實驗利用固態反應法(solid-state reaction method)進行螢光粉的製備,選擇LiZnBO3作為螢光粉主體材料,藉由摻雜Al3+離子以觀察LZBO單一材料自體發光特性及摻雜不同濃度之Eu3+離子作為發光中心,最後再共摻Li+離子作為電荷補償劑。透過上述可將本研究分成三大部分,並分析對其螢光粉之晶體結構、表面型態及光致發光特性之影響。 第一部分以LiZnBO3作為螢光粉主體材料,藉由摻雜不同濃度之Al3+離子以至完全取代B3+離子(LZBO-Al),在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示為單斜晶系(monoclinic)結構之α-LiZnBO3 (α-LZBO)且無雜相產生。隨著Al3+離子濃度的增加,可以觀察到繞射峰有明顯變化,而當Al3+離子完全取代B3+離子後,形成一個由ZnO與γ-LiAlO2所組成之混和相,且FE-SEM顯示,LZBO-Al之粉末顆粒由平滑團聚狀轉變為片狀型態。從FE-STEM得知,α-LZBO螢光粉末之晶格間距為0.27 nm並朝著(-202)方向生長,而擇區繞射圖中的光點排列可以得知粉末顆粒為多晶結構,也從中判斷LZBO-Al之片狀粉末顆粒仍為多晶結構。以367 nm激發波長所得為一寬放射峰,波長坐落於400 ~ 700 nm,隨著Al3+離子摻雜濃度的增加,放射強度隨之下降,當Al3+離子濃度為1 mol%時具有最強之放射強度。CIE色度座標由近白光區逐漸偏移至正白光區。 第二部分同樣以LiZnBO3作為螢光粉主體材料,摻雜不同濃度之Eu3+離子作為發光中心,在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示,隨著Eu3+離子摻雜濃度的增加,觀察到二次相的產生,歸因於Zn2+與Eu3+離子半徑差異甚大,且價數不同所導致之晶格扭曲。FE-SEM顯示,隨著Eu3+離子摻雜濃度的增加,螢光粉末顆粒皆為團聚不規則狀。於367 nm激發波長下,放射峰由α-LZBO自體發光(400 ~ 575 nm)及Eu3+離子之5D0→7F1 (585 ~ 600 nm)和5D0→7F2 (610 ~ 630 nm)能階躍遷所組成,其中5D0→7F2為超敏感躍遷(hypersensitive transition);由反對稱指數變化得知,造成α-LZBO晶格扭曲之Eu3+離子臨界濃度為40 mol%,大於臨界濃度將影響其晶格環境與放射峰強度。CIE色度座標顯示,發光顏色皆分布於近白光區域,其中當Eu3+離子濃度為5 mol%時,發光顏色位於正白光位置。 第三部分在Li(Zn0.95Eu0.05)BO3螢光粉體中,藉由共摻不同濃度之Li+離子作為電荷補償劑,在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示,隨著Li+離子摻雜濃度的增加,對其結晶相產生明顯的變化。FE-SEM顯示,隨著Li+離子濃度的增加,粉末顆粒呈現平滑且變大趨勢,因此可判斷Li+離子除了當電荷補償劑外,還兼具助熔劑之功用,而從FE-STEM之擇區繞射圖中晶格的光點排列推斷粉末顆粒仍為多晶結構。於367 nm、395 nm激發波長下,可以獲得兩個相同的主要發光帶由Eu3+離子之5D0→7F1磁偶極躍遷及5D0→7F2電偶極之超敏感躍遷所組成之放射光譜,當Li+離子電荷補償劑濃度為20 mol%時具有最強之放射強度。CIE色度座標顯示,於367 nm激發下,發光顏色從正白光區移動至紅光區;而於395 nm激發下則皆分布於紅光區域。.
(平裝)Subjects--Topical Terms:
999070
螢光粉.
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 = = Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /
LDR
:09042cam a2200241 i 4500
001
1129955
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0428022
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.160M
$b
7541 113
$2
ncsclt
100
1
$a
陳嘉晉
$3
1448992
245
1 0
$a
全光譜放射LiZnBO₃單一材料結構及光致發光特性研究 =
$b
Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission /
$c
陳嘉晉.
246
1 1
$a
Study on the structure and photoluminescence properties of LiZnBO₃ single material with full-spectrum emission.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[12], 107面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 張益新.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學電子工程系碩士班.
504
$a
含參考書目.
520
3
$a
本實驗利用固態反應法(solid-state reaction method)進行螢光粉的製備,選擇LiZnBO3作為螢光粉主體材料,藉由摻雜Al3+離子以觀察LZBO單一材料自體發光特性及摻雜不同濃度之Eu3+離子作為發光中心,最後再共摻Li+離子作為電荷補償劑。透過上述可將本研究分成三大部分,並分析對其螢光粉之晶體結構、表面型態及光致發光特性之影響。 第一部分以LiZnBO3作為螢光粉主體材料,藉由摻雜不同濃度之Al3+離子以至完全取代B3+離子(LZBO-Al),在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示為單斜晶系(monoclinic)結構之α-LiZnBO3 (α-LZBO)且無雜相產生。隨著Al3+離子濃度的增加,可以觀察到繞射峰有明顯變化,而當Al3+離子完全取代B3+離子後,形成一個由ZnO與γ-LiAlO2所組成之混和相,且FE-SEM顯示,LZBO-Al之粉末顆粒由平滑團聚狀轉變為片狀型態。從FE-STEM得知,α-LZBO螢光粉末之晶格間距為0.27 nm並朝著(-202)方向生長,而擇區繞射圖中的光點排列可以得知粉末顆粒為多晶結構,也從中判斷LZBO-Al之片狀粉末顆粒仍為多晶結構。以367 nm激發波長所得為一寬放射峰,波長坐落於400 ~ 700 nm,隨著Al3+離子摻雜濃度的增加,放射強度隨之下降,當Al3+離子濃度為1 mol%時具有最強之放射強度。CIE色度座標由近白光區逐漸偏移至正白光區。 第二部分同樣以LiZnBO3作為螢光粉主體材料,摻雜不同濃度之Eu3+離子作為發光中心,在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示,隨著Eu3+離子摻雜濃度的增加,觀察到二次相的產生,歸因於Zn2+與Eu3+離子半徑差異甚大,且價數不同所導致之晶格扭曲。FE-SEM顯示,隨著Eu3+離子摻雜濃度的增加,螢光粉末顆粒皆為團聚不規則狀。於367 nm激發波長下,放射峰由α-LZBO自體發光(400 ~ 575 nm)及Eu3+離子之5D0→7F1 (585 ~ 600 nm)和5D0→7F2 (610 ~ 630 nm)能階躍遷所組成,其中5D0→7F2為超敏感躍遷(hypersensitive transition);由反對稱指數變化得知,造成α-LZBO晶格扭曲之Eu3+離子臨界濃度為40 mol%,大於臨界濃度將影響其晶格環境與放射峰強度。CIE色度座標顯示,發光顏色皆分布於近白光區域,其中當Eu3+離子濃度為5 mol%時,發光顏色位於正白光位置。 第三部分在Li(Zn0.95Eu0.05)BO3螢光粉體中,藉由共摻不同濃度之Li+離子作為電荷補償劑,在750 ℃煆燒5小時的條件下,由X-Ray繞射分析結果顯示,隨著Li+離子摻雜濃度的增加,對其結晶相產生明顯的變化。FE-SEM顯示,隨著Li+離子濃度的增加,粉末顆粒呈現平滑且變大趨勢,因此可判斷Li+離子除了當電荷補償劑外,還兼具助熔劑之功用,而從FE-STEM之擇區繞射圖中晶格的光點排列推斷粉末顆粒仍為多晶結構。於367 nm、395 nm激發波長下,可以獲得兩個相同的主要發光帶由Eu3+離子之5D0→7F1磁偶極躍遷及5D0→7F2電偶極之超敏感躍遷所組成之放射光譜,當Li+離子電荷補償劑濃度為20 mol%時具有最強之放射強度。CIE色度座標顯示,於367 nm激發下,發光顏色從正白光區移動至紅光區;而於395 nm激發下則皆分布於紅光區域。.
520
3
$a
In this experiment, the solid-state reaction method was used to prepare phosphors, LiZnBO3 was selected as the main material of phosphors, the self-luminescence characteristics of LZBO single material were observed by doping with Al3+ ions, and different concentrations of Eu3+ ion were doped as the luminescence center, and finally Li+ ions were co-doped as charge compensator. Based on the above, this study can be divided into three parts, and the effects on the crystal structure, surface morphologies and photoluminescence characteristics of phosphors are also analyzed. For the first part, LiZnBO3 was used as the main material of phosphor, and by doping with different concentrations of Al3+ ions to completely replace B3+ ions (LZBO-Al), and calcined at 750 ℃ for 5 hours. The results of X-Ray diffraction analysis showed that the monoclinic structure of α-LiZnBO3 (α-LZBO) was produced without heterogeneity. With the increase of Al3+ ion concentration, it can be observed that the diffraction peaks changed significantly, and when the Al3+ ion completely replaces the B3+ ion in the LiZnBO3 system, a mixed phase composed of ZnO and γ-LiAlO2 is formed, and the FE-SEM shows that the powder particles of LZBO-Al change from smooth agglomeration to sheet form. From FE-STEM, the lattice spacing of α-LZBO fluorescent powder is 0.27 nm and grows in the direction of (-202), and the light spot arrangement in the diffraction pattern can show that the powder particles are polycrystalline, and it is also judged that the flaky powder particles of LZBO-Al are still polycrystalline. Under an excitation wavelength of 367 nm, a broad emission peak at 400 ~ 700 nm appears in the emission spectrum. The emission intensity decreases with the increase of Al3+ ion doping concentration, and the strongest emission intensity is obtained when the Al3+ ion concentration is 1 mol%. The chromaticity coordinates of the CIE gradually shifted from the near white region to the white region. In the second part, LiZnBO3 doped with different concentrations of Eu3+ ion phosphors were prepared using the solid-state reaction for calcination at 750 ℃, 5 h. The results of X-Ray diffraction analysis showed that with the increase of Eu3+ ion doping concentrations, the formation of a second phase was observed, which was attributed to the lattice distortion caused by the large difference in the radius of Zn2+ and Eu3+ ions, and the valences difference. FE-SEM results showed that with increasing the Eu3+ ion doping concentration, the particles of phosphor powder were agglomerated irregularly. Under the excitation wavelength of 367 nm, the emission peaks are composed of α-LZBO self-luminescence (400 ~ 575 nm), 5D0→7F1 (585 ~ 600 nm) and 5D0→7F2 (610 ~ 630 nm) electronic transitions of Eu3+ ions. According to the results of the asymmetry ratio, the critical concentration of Eu3+ ion leads the distortion of the α-LZBO lattice is 40 mol%. When the concentration of Eu3+ ion is greater than 40 mol%, the degree of lattice asymmetry becomes larger leading the emission peak intensity of 5D0→7F2 electronic transition will increase. The CIE chromaticity coordinates show that the luminescent colors are all distributed in the near-white region. When the Eu3+ ion concentration is 5 mol%, the luminescent colors are located in the white region. In the third part, in Li(Zn0.95Eu0.05)BO3 fluorescent powder was co-doped with different concentrations of Li+ ions as charge compensators, and calcined at 750 ℃ for 5 hours. The results of X-Ray diffraction analysis showed that the crystal structure is not a pure Li(Zn0.95Eu0.05)BO3 phase with increasing the Li+ ion concentrations. FE-SEM showed that with the increased of Li+ ion concentration, the phosphor powder particles showed a smooth and larger trend, because the Li+ ions not only act as a charge compensator but also be a flux in this study. The powder particles are still polycrystalline from the light spot arrangement of the crystal lattice in the FE-STEM diffraction pattern. At the excitation wavelengths of 367 nm and 395 nm, the emission spectra of the two same main light-emitting bands consisting of the magnetic dipole transition,5D0→7F1, and the electric dipole transition, 5D0→7F2, can be obtained of Eu3+ ions, respectively. When the concentration of Li+ ion is 20 mol%, it has the strongest radiation intensity. The CIE chromaticity coordinates showed that the luminescent color moved from the white region to the red region under 367 nm excitation; on the contrary, under 395 nm excitation, they are all distributed in the red region..
563
$a
(平裝)
650
# 4
$a
螢光粉.
$3
999070
650
# 4
$a
Al3+離子.
$3
1451629
650
# 4
$a
Eu3+離子.
$3
1384183
650
# 4
$a
電荷補償劑.
$3
1218413
650
# 4
$a
phosphor.
$3
1048609
650
# 4
$a
LiZnBO3.
$3
1451630
650
# 4
$a
Al3+ ion.
$3
1451631
650
# 4
$a
Eu3+ ion.
$3
1384185
650
# 4
$a
charge compensator.
$3
1218415
856
7 #
$u
https://handle.ncl.edu.tw/11296/hnry8h
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013269
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.160M 7541 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入