語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
軸流輔助電解拋光對純鎳表面品質之研究 = = Study on Surf...
~
吳俊慶
軸流輔助電解拋光對純鎳表面品質之研究 = = Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
軸流輔助電解拋光對純鎳表面品質之研究 =/ 吳俊慶.
其他題名:
Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /
其他題名:
Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process.
作者:
吳俊慶
出版者:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
面頁冊數:
[9], 65面 :圖, 表 ; : 30公分.;
附註:
指導教授: 蔡逢哲.
標題:
純鎳材料. -
電子資源:
電子資源
軸流輔助電解拋光對純鎳表面品質之研究 = = Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /
吳俊慶
軸流輔助電解拋光對純鎳表面品質之研究 =
Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process.吳俊慶. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [9], 65面 :圖, 表 ;30公分.
指導教授: 蔡逢哲.
碩士論文--國立虎尾科技大學動力機械工程系機械與機電工程碩士班.
含參考書目.
本研究主要探討不同葉片所產生的軸向流場輔助電解拋光對純鎳表面拋光效果。階段實驗目標包含純鎳電解拋光電流/電壓特性曲線分析;運用實驗計畫法求得最適因子水準組合,後續依實驗結果對軸向流場輔助電解拋光影響進行討論。實驗先行調整不同重量百分濃度氯化鈉電解液,對純鎳進行電解拋光電壓電流特性曲線量測,得知在濃度20 wt%、電流密度3 A/cm2條件下存在拋光區,隨後研究持續利用實驗計畫法用以葉片輪廓、葉片攻角、葉片數量、葉片直徑、極間距離與主軸轉速等參數進行實驗設計,研究以L18(21×37)直交表進行實驗,透過平均值、ANOVA變異數分析得出最適因子水準組合,並發現表面粗糙度受到主軸轉速與葉片直徑影響最顯著。主要係因主軸帶動葉片於電解液中轉動形成流場,使試片表面電解液快速更新,可保持電場穩定,提高加工效率,但須避免主軸轉速過快使鈍化層破壞,影響拋光效果。同時適當葉片直徑可使電解液形成較完整流場,以提高試片表面均勻性及加工品質。研究結果得知在葉片輪廓B、葉片攻角30°、葉片數量5、葉片直徑50 mm、極間距離20 mm與主軸轉速750 rpm之參數條件下,加工3 min能將純鎳原始試片表面粗糙度0.225 μmRa /2.070 μmRmax改善至0.020 μmRa/0.154 μmRmax,可達鏡面拋光效果。同時研究得知當葉片直徑與圓槽內圓尺寸比值為1:2時,可強化電解液的更新速度,有助於提高電化學反應穩定性,並可有效提升工件表面均勻性,其拋光後表面精度誤差可達0.022 μmSa以內。但隨著加工時間持續增加,當表面加工痕跡完全移除後,因工件表面持續受電化學解離作用影響,形成新表面波峰,使得表面粗糙度些微上升。本研究結果未來可作為鎳金屬表面處理產業技術發展重要參考依據。.
(平裝)Subjects--Topical Terms:
1383939
純鎳材料.
軸流輔助電解拋光對純鎳表面品質之研究 = = Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /
LDR
:06066cam a2200241 i 4500
001
1130008
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0489019
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.154M
$b
2620 113
$2
ncsclt
100
1
$a
吳俊慶
$q
(Chun-Ching Wu)
$3
1081363
245
1 0
$a
軸流輔助電解拋光對純鎳表面品質之研究 =
$b
Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process /
$c
吳俊慶.
246
1 1
$a
Study on Surface Quality of Pure Nickel Morphology Using Axial Flow Enhanced Electrolytic Polishing Process.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[9], 65面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 蔡逢哲.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學動力機械工程系機械與機電工程碩士班.
504
$a
含參考書目.
520
3
$a
本研究主要探討不同葉片所產生的軸向流場輔助電解拋光對純鎳表面拋光效果。階段實驗目標包含純鎳電解拋光電流/電壓特性曲線分析;運用實驗計畫法求得最適因子水準組合,後續依實驗結果對軸向流場輔助電解拋光影響進行討論。實驗先行調整不同重量百分濃度氯化鈉電解液,對純鎳進行電解拋光電壓電流特性曲線量測,得知在濃度20 wt%、電流密度3 A/cm2條件下存在拋光區,隨後研究持續利用實驗計畫法用以葉片輪廓、葉片攻角、葉片數量、葉片直徑、極間距離與主軸轉速等參數進行實驗設計,研究以L18(21×37)直交表進行實驗,透過平均值、ANOVA變異數分析得出最適因子水準組合,並發現表面粗糙度受到主軸轉速與葉片直徑影響最顯著。主要係因主軸帶動葉片於電解液中轉動形成流場,使試片表面電解液快速更新,可保持電場穩定,提高加工效率,但須避免主軸轉速過快使鈍化層破壞,影響拋光效果。同時適當葉片直徑可使電解液形成較完整流場,以提高試片表面均勻性及加工品質。研究結果得知在葉片輪廓B、葉片攻角30°、葉片數量5、葉片直徑50 mm、極間距離20 mm與主軸轉速750 rpm之參數條件下,加工3 min能將純鎳原始試片表面粗糙度0.225 μmRa /2.070 μmRmax改善至0.020 μmRa/0.154 μmRmax,可達鏡面拋光效果。同時研究得知當葉片直徑與圓槽內圓尺寸比值為1:2時,可強化電解液的更新速度,有助於提高電化學反應穩定性,並可有效提升工件表面均勻性,其拋光後表面精度誤差可達0.022 μmSa以內。但隨著加工時間持續增加,當表面加工痕跡完全移除後,因工件表面持續受電化學解離作用影響,形成新表面波峰,使得表面粗糙度些微上升。本研究結果未來可作為鎳金屬表面處理產業技術發展重要參考依據。.
520
3
$a
This study mainly explores the effect of axial flow field-assisted electropolishing generated by different blades on the surface polishing of pure nickel. The experimental goals include analysis of the current and voltage characteristic curves of pure nickel electrolytic polishing, using the experimental planning method to obtain the optimal factor level combination and follow-up. The influence of axial flow field-assisted electropolishing is discussed based on the experimental results. The experiment first adjusted the sodium chloride electrolyte with different weight percentage concentrations and measured pure nickel's electrolytic polishing voltage and current characteristic curve. A polishing area appeared in the concentration of 20 wt% and current density of 3 A/cm2, then studied and used in the experiment. The experimental parameters were planned using the planning method, and the L18 (21×37) orthogonal table was used. The blade profile, blade angle of attack, blade number, and experimental design were carried out using parameters such as blade diameter, pole-to-pole distance, and spindle speed. The optimal factor level combination was analyzed using calculation results such as average value and ANOVA variation. Surface roughness was affected by spindle speed and blade diameter. Most significantly. The spindle is used to drive the blades to rotate in the electrolyte to form a flow field, which quickly renews the electrolyte on the surface of the test piece, keeps the electric field stable, and improves processing efficiency. It is necessary to avoid the spindle rotating too fast to destroy the viscous layer and affect the polishing effect. Appropriate blade diameter can make the electrolyte form a complete flow field, improving the test piece's surface uniformity and processing quality. The research results show that under the parameters of blade profile B, blade angle of attack 30°, blade number 5, blade diameter 50 mm, pole-to-pole distance 20 mm, and spindle speed 750 rpm, the surface of the pure nickel original specimen can be processed for 3 minutes. The roughness 0.225 μmRa/2.070 μmRmax is improved to 0.020 μmRa/0.154 μmRmax, achieving a mirror polishing effect. Meanwhile, it was found that when the ratio of the blade diameter to the inner circle of the circular groove was 1:2, the renewal rate of the electrolyte could be strengthened, which could help to improve the stability of the electrochemical reaction and enhance the surface uniformity of the workpiece. The accuracy error of the surface after polishing could reach 0.022 μmSa or less. However, as the machining time continues to increase, when the surface machining marks are entirely removed, the surface of the workpiece is continuously subjected to electrochemical dissociation, resulting in the formation of new surface peaks and a slight increase in surface roughness. The results of this study can be used as an essential reference for the future technological development of the nickel metal surface treatment industry..
563
$a
(平裝)
650
# 4
$a
純鎳材料.
$3
1383939
650
# 4
$a
I-V曲線.
$3
1015019
650
# 4
$a
電解拋光.
$3
1416097
650
# 4
$a
軸向流場.
$3
1451345
650
# 4
$a
鈍化層.
$3
1451346
650
# 4
$a
表面粗糙度.
$3
995507
650
# 4
$a
Pure nickel material.
$3
1451347
650
# 4
$a
I-V curve.
$3
1451348
650
# 4
$a
Electrolytic polishing.
$3
874130
650
# 4
$a
Axial flow field.
$3
1451349
650
# 4
$a
Viscous layer.
$3
1451350
650
# 4
$a
Surface roughness.
$3
995502
856
7 #
$u
https://handle.ncl.edu.tw/11296/2v5ttq
$z
電子資源
$2
http
筆 0 讀者評論
全部
圖書館B1F 博碩士論文專區
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
T013214
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.154M 2620 113
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入