語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in single-cell RNA-seq data analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine learning in single-cell RNA-seq data analysis/ by Khalid Raza.
作者:
Raza, Khalid.
出版者:
Singapore :Springer Nature Singapore : : 2024.,
面頁冊數:
xviii, 88 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Data Analysis and Big Data. -
電子資源:
https://doi.org/10.1007/978-981-97-6703-8
ISBN:
9789819767038
Machine learning in single-cell RNA-seq data analysis
Raza, Khalid.
Machine learning in single-cell RNA-seq data analysis
[electronic resource] /by Khalid Raza. - Singapore :Springer Nature Singapore :2024. - xviii, 88 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computational intelligence,2625-3712. - SpringerBriefs in computational intelligence..
Chapter 1. Introduction to Single-Cell RNA-seq Data Analysis -- Chapter 2. Preprocessing and Quality Control -- Chapter 3. Dimensionality Reduction and Clustering -- Chapter 4. Differential Expression Analysis -- Chapter 5. Trajectory Inference and Cell Fate Prediction -- Chapter 6. Emerging Topics and Future Directions.
This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.
ISBN: 9789819767038
Standard No.: 10.1007/978-981-97-6703-8doiSubjects--Topical Terms:
1366136
Data Analysis and Big Data.
LC Class. No.: QP625.N89
Dewey Class. No.: 572.8833
Machine learning in single-cell RNA-seq data analysis
LDR
:02424nam a22003495a 4500
001
1134577
003
DE-He213
005
20240903151938.0
006
m d
007
cr nn 008maaau
008
241213s2024 si s 0 eng d
020
$a
9789819767038
$q
(electronic bk.)
020
$a
9789819767021
$q
(paper)
024
7
$a
10.1007/978-981-97-6703-8
$2
doi
035
$a
978-981-97-6703-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QP625.N89
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
572.8833
$2
23
090
$a
QP625.N89
$b
R278 2024
100
1
$a
Raza, Khalid.
$e
editor.
$1
https://orcid.org/0000-0002-3646-6828
$3
1354511
245
1 0
$a
Machine learning in single-cell RNA-seq data analysis
$h
[electronic resource] /
$c
by Khalid Raza.
260
$a
Singapore :
$c
2024.
$b
Springer Nature Singapore :
$b
Imprint: Springer,
300
$a
xviii, 88 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in computational intelligence,
$x
2625-3712
505
0
$a
Chapter 1. Introduction to Single-Cell RNA-seq Data Analysis -- Chapter 2. Preprocessing and Quality Control -- Chapter 3. Dimensionality Reduction and Clustering -- Chapter 4. Differential Expression Analysis -- Chapter 5. Trajectory Inference and Cell Fate Prediction -- Chapter 6. Emerging Topics and Future Directions.
520
$a
This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.
650
2 4
$a
Data Analysis and Big Data.
$3
1366136
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Artificial Intelligence.
$3
646849
650
0
$a
Machine learning.
$3
561253
650
0
$a
Nucleotide sequence
$x
Data processing.
$3
670311
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computational intelligence.
$3
1415104
856
4 0
$u
https://doi.org/10.1007/978-981-97-6703-8
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入