語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to robust combinatorial optimization = concepts, models and algorithms for decision making under uncertainty /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An introduction to robust combinatorial optimization/ by Marc Goerigk, Michael Hartisch.
其他題名:
concepts, models and algorithms for decision making under uncertainty /
作者:
Goerigk, Marc.
其他作者:
Hartisch, Michael.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xii, 308 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Operations Research, Management Science. -
電子資源:
https://doi.org/10.1007/978-3-031-61261-9
ISBN:
9783031612619
An introduction to robust combinatorial optimization = concepts, models and algorithms for decision making under uncertainty /
Goerigk, Marc.
An introduction to robust combinatorial optimization
concepts, models and algorithms for decision making under uncertainty /[electronic resource] :by Marc Goerigk, Michael Hartisch. - Cham :Springer Nature Switzerland :2024. - xii, 308 p. :ill., digital ;24 cm. - International series in operations research & management science,v. 3612214-7934 ;. - International series in operations research & management science ;106..
1. Introduction -- 2. Basic Concepts -- 3. Robust Problems -- 4. General Reformulation Results -- 5. General Solution Methods -- 6. Robust election Problems -- 7. Robust Shortest Path Problems -- 8. Robust Spanning Tree Problems -- 9. Other Combinatorial Problems -- 10. Other Models for Robust Optimization -- 11. Open Problems.
This book offers a self-contained introduction to the world of robust combinatorial optimization. It explores decision-making using the min-max and min-max regret criteria, while also delving into the two-stage and recoverable robust optimization paradigms. It begins by introducing readers to general results for interval, discrete, and budgeted uncertainty sets, and subsequently provides a comprehensive examination of specific combinatorial problems, including the selection, shortest path, spanning tree, assignment, knapsack, and traveling salesperson problems. The book equips both students and newcomers to the field with a grasp of the fundamental questions and ongoing advancements in robust optimization. Based on the authors' years of teaching and refining numerous courses, it not only offers essential tools but also highlights the open questions that define this subject area.
ISBN: 9783031612619
Standard No.: 10.1007/978-3-031-61261-9doiSubjects--Topical Terms:
785065
Operations Research, Management Science.
LC Class. No.: QA402.5
Dewey Class. No.: 519.64
An introduction to robust combinatorial optimization = concepts, models and algorithms for decision making under uncertainty /
LDR
:02472nam a22003735a 4500
001
1134610
003
DE-He213
005
20240826140256.0
006
m d
007
cr nn 008maaau
008
241213s2024 sz s 0 eng d
020
$a
9783031612619
$q
(electronic bk.)
020
$a
9783031612602
$q
(paper)
024
7
$a
10.1007/978-3-031-61261-9
$2
doi
035
$a
978-3-031-61261-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
KJT
$2
bicssc
072
7
$a
KJMD
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
KJT
$2
thema
072
7
$a
KJMD
$2
thema
082
0 4
$a
519.64
$2
23
090
$a
QA402.5
$b
.G597 2024
100
1
$a
Goerigk, Marc.
$3
1456172
245
1 3
$a
An introduction to robust combinatorial optimization
$h
[electronic resource] :
$b
concepts, models and algorithms for decision making under uncertainty /
$c
by Marc Goerigk, Michael Hartisch.
260
$a
Cham :
$c
2024.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xii, 308 p. :
$b
ill., digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
490
1
$a
International series in operations research & management science,
$x
2214-7934 ;
$v
v. 361
505
0
$a
1. Introduction -- 2. Basic Concepts -- 3. Robust Problems -- 4. General Reformulation Results -- 5. General Solution Methods -- 6. Robust election Problems -- 7. Robust Shortest Path Problems -- 8. Robust Spanning Tree Problems -- 9. Other Combinatorial Problems -- 10. Other Models for Robust Optimization -- 11. Open Problems.
520
$a
This book offers a self-contained introduction to the world of robust combinatorial optimization. It explores decision-making using the min-max and min-max regret criteria, while also delving into the two-stage and recoverable robust optimization paradigms. It begins by introducing readers to general results for interval, discrete, and budgeted uncertainty sets, and subsequently provides a comprehensive examination of specific combinatorial problems, including the selection, shortest path, spanning tree, assignment, knapsack, and traveling salesperson problems. The book equips both students and newcomers to the field with a grasp of the fundamental questions and ongoing advancements in robust optimization. Based on the authors' years of teaching and refining numerous courses, it not only offers essential tools but also highlights the open questions that define this subject area.
650
2 4
$a
Operations Research, Management Science.
$3
785065
650
2 4
$a
Discrete Optimization.
$3
1019327
650
1 4
$a
Operations Research and Decision Theory.
$3
1366301
650
0
$a
Decision making
$x
Mathematical models.
$3
528289
650
0
$a
Combinatorial optimization.
$3
528128
700
1
$a
Hartisch, Michael.
$3
1456173
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
International series in operations research & management science ;
$v
106.
$3
744236
856
4 0
$u
https://doi.org/10.1007/978-3-031-61261-9
950
$a
Business and Management (SpringerNature-41169)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入