語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical introduction to data science
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematical introduction to data science/ by Sven A. Wegner.
作者:
Wegner, Sven A.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2024.,
面頁冊數:
ix, 299 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Data Science. -
電子資源:
https://doi.org/10.1007/978-3-662-69426-8
ISBN:
9783662694268
Mathematical introduction to data science
Wegner, Sven A.
Mathematical introduction to data science
[electronic resource] /by Sven A. Wegner. - Berlin, Heidelberg :Springer Berlin Heidelberg :2024. - ix, 299 p. :ill., digital ;24 cm.
Preface -- 1 What is Data (Science)? -- 2 Affine Linear, Polynomial and Logistic Regression -- 3 k-nearest Neighbors -- 4 Clustering -- 5 Graph Clustering -- 6 Best-Fit Subspaces -- 7 Singular Value Decomposition -- 8 Curse and Blessing of High Dimensionality -- 9 Concentration of Measure -- 10 Gaussian Random Vectors in High Dimensions -- 11 Dimensionality Reduction à la Johnson-Lindenstrauss -- 12 Separation and Fitting of HIgh-Dimensional Gaussians -- 13 Perceptron -- 14 Support Vector Machines -- 15 Kernel Method -- 16 Neural Networks -- 17 Gradient Descent for Convex Functions -- Appendix: Selected Results of Probability Theory -- Bibliography -- Index.
This textbook is intended for students of mathematics who have completed the foundational courses of their undergraduate studies and now want to specialize in Data Science and Machine Learning. It introduces the reader to the most important topics in the latter areas focusing on rigorous proofs and a systematic understanding of the underlying ideas. The textbook comes with 121 classroom-tested exercises. Topics covered include k-nearest neighbors, linear and logistic regression, clustering, best-fit subspaces, principal component analysis, dimensionality reduction, collaborative filtering, perceptron, support vector machines, the kernel method, gradient descent and neural networks. The author Sven A. Wegner earned his PhD in Functional Analysis in 2010. After several international academic positions, he is currently affiliated with the University of Hamburg (Germany)
ISBN: 9783662694268
Standard No.: 10.1007/978-3-662-69426-8doiSubjects--Topical Terms:
1174436
Data Science.
LC Class. No.: QA300
Dewey Class. No.: 515
Mathematical introduction to data science
LDR
:02620nam a22003495a 4500
001
1135221
003
DE-He213
005
20240831130242.0
006
m d
007
cr nn 008maaau
008
241213s2024 gw s 0 eng d
020
$a
9783662694268
$q
(electronic bk.)
020
$a
9783662694251
$q
(paper)
024
7
$a
10.1007/978-3-662-69426-8
$2
doi
035
$a
978-3-662-69426-8
040
$a
GP
$c
GP
041
1
$a
eng
$h
ger
050
4
$a
QA300
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
515
$2
23
090
$a
QA300
$b
.W412 2024
100
1
$a
Wegner, Sven A.
$3
1456874
240
1 0
$a
Mathematische Einführung in Data Science.
$l
English
245
1 0
$a
Mathematical introduction to data science
$h
[electronic resource] /
$c
by Sven A. Wegner.
260
$a
Berlin, Heidelberg :
$c
2024.
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
300
$a
ix, 299 p. :
$b
ill., digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Preface -- 1 What is Data (Science)? -- 2 Affine Linear, Polynomial and Logistic Regression -- 3 k-nearest Neighbors -- 4 Clustering -- 5 Graph Clustering -- 6 Best-Fit Subspaces -- 7 Singular Value Decomposition -- 8 Curse and Blessing of High Dimensionality -- 9 Concentration of Measure -- 10 Gaussian Random Vectors in High Dimensions -- 11 Dimensionality Reduction à la Johnson-Lindenstrauss -- 12 Separation and Fitting of HIgh-Dimensional Gaussians -- 13 Perceptron -- 14 Support Vector Machines -- 15 Kernel Method -- 16 Neural Networks -- 17 Gradient Descent for Convex Functions -- Appendix: Selected Results of Probability Theory -- Bibliography -- Index.
520
$a
This textbook is intended for students of mathematics who have completed the foundational courses of their undergraduate studies and now want to specialize in Data Science and Machine Learning. It introduces the reader to the most important topics in the latter areas focusing on rigorous proofs and a systematic understanding of the underlying ideas. The textbook comes with 121 classroom-tested exercises. Topics covered include k-nearest neighbors, linear and logistic regression, clustering, best-fit subspaces, principal component analysis, dimensionality reduction, collaborative filtering, perceptron, support vector machines, the kernel method, gradient descent and neural networks. The author Sven A. Wegner earned his PhD in Functional Analysis in 2010. After several international academic positions, he is currently affiliated with the University of Hamburg (Germany)
650
2 4
$a
Data Science.
$3
1174436
650
1 4
$a
Data Analysis and Big Data.
$3
1366136
650
0
$a
Machine learning
$x
Mathematics.
$3
1340126
650
0
$a
Mathematical analysis.
$3
527926
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-662-69426-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入