語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Battery State Estimation : = Methods and Models.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Battery State Estimation :/
其他題名:
Methods and Models.
作者:
Wang, Shunli.
出版者:
Stevenage :Institution of Engineering & Technology, : 2021.,
面頁冊數:
1 online resource (313 p.).
標題:
Filtre de Kalman. -
電子資源:
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3058727
ISBN:
183953530X
Battery State Estimation : = Methods and Models.
Wang, Shunli.
Battery State Estimation :
Methods and Models. - Stevenage :Institution of Engineering & Technology,2021. - 1 online resource (313 p.). - Energy Engineering Ser.. - Energy Engineering Ser..
Intro -- Title -- Copyright -- Contents -- About the editor -- Foreword -- Preface -- List of contributors -- Chapter 1 Introduction -- 1.1 State of the art -- 1.2 Application requirements -- 1.3 Research methodology -- 1.4 Research status and direction -- 1.5 Chapter summary -- Acknowledgment -- Chapter 2 Mechanism and influencing factors of lithium-ion batteries -- 2.1 Introduction -- 2.2 Operating mechanism -- 2.2.1 Brief introduction -- 2.2.2 Battery composition -- 2.2.3 Working principle -- 2.2.4 Cycling lifespan -- 2.3 Battery characteristics -- 2.3.1 State of power
Batteries are vital for storing renewable energy for stationary and mobile applications. Managing batteries requires knowledge of parameters such as charge and power output. State estimation estimates such parameters using measurement and modelling; a process conveyed in this book through experimental results and verification.
ISBN: 183953530XSubjects--Topical Terms:
1457782
Filtre de Kalman.
LC Class. No.: TK2896
Dewey Class. No.: 621.31242
Battery State Estimation : = Methods and Models.
LDR
:04871cam a2200493Mu 4500
001
1135823
003
OCoLC
005
20230522010532.0
006
m d
007
cr |n|||||||||
008
241217s2021 xx o ||| 0 eng d
019
$a
1289797174
020
$a
183953530X
020
$a
9781839535307
$q
(electronic bk.)
020
$z
9781839535291
$q
(hbk.)
020
$z
1839535296
$q
(hbk.)
035
$a
3058727
$b
(N$T)
035
$a
(OCoLC)1276856503
$z
(OCoLC)1289797174
035
$a
on1276856503
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
UKAHL
$d
UIU
$d
N$T
$d
OCLCO
$d
OCLCF
$d
OCLCQ
049
$a
MAIN
050
4
$a
TK2896
082
0 4
$a
621.31242
$2
23
100
1
$a
Wang, Shunli.
$3
1413279
245
1 0
$a
Battery State Estimation :
$b
Methods and Models.
260
$a
Stevenage :
$b
Institution of Engineering & Technology,
$c
2021.
300
$a
1 online resource (313 p.).
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Energy Engineering Ser.
505
0
$a
Intro -- Title -- Copyright -- Contents -- About the editor -- Foreword -- Preface -- List of contributors -- Chapter 1 Introduction -- 1.1 State of the art -- 1.2 Application requirements -- 1.3 Research methodology -- 1.4 Research status and direction -- 1.5 Chapter summary -- Acknowledgment -- Chapter 2 Mechanism and influencing factors of lithium-ion batteries -- 2.1 Introduction -- 2.2 Operating mechanism -- 2.2.1 Brief introduction -- 2.2.2 Battery composition -- 2.2.3 Working principle -- 2.2.4 Cycling lifespan -- 2.3 Battery characteristics -- 2.3.1 State of power
505
8
$a
2.3.2 Internal resistance -- 2.3.3 Open-circuit voltage -- 2.3.4 Self-discharge current rate -- 2.3.5 Terminal voltage -- 2.3.6 Current heat energy -- 2.3.7 Capacity variation -- 2.3.8 Temperature change -- 2.4 Critical indicators for battery state estimation -- 2.4.1 Description of major parameters -- 2.4.2 Temperature effects -- 2.4.3 Charge__amp__#8211 -- discharge current rate -- 2.4.4 Aging degree -- 2.4.5 Self-discharge rate -- 2.5 Basic state estimation strategies -- 2.5.1 Discharging test -- 2.5.2 Ah integral method -- 2.5.3 Open-circuit voltage method -- 2.5.4 Internal resistance method
505
8
$a
2.6 Kalman filtering and its extension -- 2.6.1 Kalman filtering -- 2.6.2 Extended Kalman filtering -- 2.6.3 Unscented Kalman filtering -- 2.6.4 Dual Kalman filtering -- 2.6.5 Adaptive extended Kalman filtering -- 2.6.6 Square root-unscented Kalman filtering -- 2.6.7 Cubature Kalman filtering -- 2.7 Intelligent state estimation methods -- 2.7.1 State observer -- 2.7.2 Monte Carlo treatment -- 2.7.3 Bayesian estimation -- 2.7.4 Support vector machine -- 2.7.5 Particle filtering -- 2.7.6 Neural network -- 2.7.7 Deep learning -- 2.8 Algorithm improvement strategies
505
8
$a
2.8.1 Bayesian importance sampling -- 2.8.2 Coordinate transformation -- 2.8.3 Binary iteration treatment -- 2.9 Chapter summary -- Acknowledgment -- Chapter 3 Equivalent modeling, improvement, and state-space description -- 3.1 Introduction -- 3.1.1 Application background -- 3.1.2 Modeling principle -- 3.1.3 Modeling types and concepts -- 3.1.4 Model building principle -- 3.1.5 Battery modeling methods -- 3.1.6 Modeling characteristic comparison -- 3.2 Electrochemical modeling -- 3.2.1 Electrochemical modeling -- 3.2.2 Mathematical Shepherd modeling -- 3.2.3 Electrochemical thermal modeling
505
8
$a
3.3 Electrical equivalent modeling -- 3.3.1 Equivalent circuit modeling -- 3.3.2 Internal resistance modeling -- 3.3.3 Resistance__amp__#8211 -- capacitance modeling -- 3.3.4 Electrical modeling effect comparison -- 3.3.5 Surface effect modeling -- 3.4 Improved Thevenin equivalent modeling -- 3.4.1 Thevenin electrical modeling -- 3.4.2 Second-order circuit modeling -- 3.4.3 Dynamic high-order equivalent modeling -- 3.4.4 Double internal resistance modeling -- 3.4.5 Improved surface effect modeling -- 3.4.6 State-space description -- 3.4.7 Simulation realization
505
8
$a
3.5 Improved equivalent circuit modeling.
520
$a
Batteries are vital for storing renewable energy for stationary and mobile applications. Managing batteries requires knowledge of parameters such as charge and power output. State estimation estimates such parameters using measurement and modelling; a process conveyed in this book through experimental results and verification.
588
0
$a
Print version record.
590
$a
Added to collection customer.56279.3
650
6
$a
Filtre de Kalman.
$3
1457782
650
6
$a
Piles électriques
$x
Modèles mathématiques.
$3
1457781
650
0
$a
Kalman filtering.
$3
579841
650
0
$a
Electric batteries
$x
Mathematical models.
$3
1219020
776
0 8
$i
Print version:
$a
Wang, Shunli
$t
Battery State Estimation
$d
Stevenage : Institution of Engineering & Technology,c2021
$z
9781839535291
830
0
$a
Energy Engineering Ser.
$3
1457780
856
4 0
$3
EBSCOhost
$u
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3058727
938
$a
ProQuest Ebook Central
$b
EBLB
$n
EBL6747770
938
$a
Askews and Holts Library Services
$b
ASKH
$n
AH38728629
938
$a
EBSCOhost
$b
EBSC
$n
3058727
994
$a
92
$b
N$T
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入