語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Two-dimensional product-cubic systems.. Vol. IV,. Crossing-quadratic vector fields
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Two-dimensional product-cubic systems./ by Albert C. J. Luo.
其他題名:
Crossing-quadratic vector fields
作者:
Luo, Albert C. J.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
x, 256 p. :ill. (chiefly color), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
General Algebraic Systems. -
電子資源:
https://doi.org/10.1007/978-3-031-57104-6
ISBN:
9783031571046
Two-dimensional product-cubic systems.. Vol. IV,. Crossing-quadratic vector fields
Luo, Albert C. J.
Two-dimensional product-cubic systems.
Vol. IV,Crossing-quadratic vector fields[electronic resource] /Crossing-quadratic vector fieldsby Albert C. J. Luo. - Cham :Springer Nature Switzerland :2024. - x, 256 p. :ill. (chiefly color), digital ;24 cm.
Preface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation.
This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink) The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles.
ISBN: 9783031571046
Standard No.: 10.1007/978-3-031-57104-6doiSubjects--Topical Terms:
672227
General Algebraic Systems.
LC Class. No.: QA402
Dewey Class. No.: 515.252
Two-dimensional product-cubic systems.. Vol. IV,. Crossing-quadratic vector fields
LDR
:02417nam a2200361 a 4500
001
1138328
003
DE-He213
005
20241031115735.0
006
m d
007
cr nn 008maaau
008
250117s2024 sz s 0 eng d
020
$a
9783031571046
$q
(electronic bk.)
020
$a
9783031571039
$q
(paper)
024
7
$a
10.1007/978-3-031-57104-6
$2
doi
035
$a
978-3-031-57104-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402
072
7
$a
TBJ
$2
bicssc
072
7
$a
GPFC
$2
bicssc
072
7
$a
SCI064000
$2
bisacsh
072
7
$a
TBJ
$2
thema
072
7
$a
GPFC
$2
thema
082
0 4
$a
515.252
$2
23
090
$a
QA402
$b
.L964 2024
100
1
$a
Luo, Albert C. J.
$3
787936
245
1 0
$a
Two-dimensional product-cubic systems.
$n
Vol. IV,
$p
Crossing-quadratic vector fields
$h
[electronic resource] /
$c
by Albert C. J. Luo.
246
3 0
$a
Crossing-quadratic vector fields
260
$a
Cham :
$c
2024.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
x, 256 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
505
0
$a
Preface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation.
520
$a
This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink) The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles.
650
2 4
$a
General Algebraic Systems.
$3
672227
650
2 4
$a
Mathematical and Computational Engineering Applications.
$3
1387767
650
2 4
$a
Multibody Systems and Mechanical Vibrations.
$3
1366276
650
2 4
$a
Dynamical Systems.
$3
1366074
650
1 4
$a
Applied Dynamical Systems.
$3
1366186
650
0
$a
Method of steepest descent (Numerical analysis)
$3
1211313
650
0
$a
Vector fields.
$3
792621
650
0
$a
Equations, Cubic.
$3
1211351
650
0
$a
Nonlinear systems.
$3
569004
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-57104-6
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入