語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning for Financial Market Forecasting.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Machine Learning for Financial Market Forecasting./
作者:
Johnson, Jaya.
面頁冊數:
1 online resource (104 pages)
附註:
Source: Masters Abstracts International, Volume: 84-11.
Contained By:
Masters Abstracts International84-11.
標題:
Finance. -
電子資源:
click for full text (PQDT)
ISBN:
9798379491109
Machine Learning for Financial Market Forecasting.
Johnson, Jaya.
Machine Learning for Financial Market Forecasting.
- 1 online resource (104 pages)
Source: Masters Abstracts International, Volume: 84-11.
Thesis (A.L.M.)--Harvard University, 2023.
Includes bibliographical references
Stock market forecasting continues to be an active area of research. In recent years machine learning algorithms have been applied to achieve better predictions. Using natural language processing (NLP), contextual information from unstructured data including news feeds, analysts calls and other online content have been used as indicators to improve prediction rates. In this work we compare traditional machine learning methods with more recent ones, including LSTM and FinBERT to assess improvements, challenges and future directions.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798379491109Subjects--Topical Terms:
559073
Finance.
Subjects--Index Terms:
Stock market forecastingIndex Terms--Genre/Form:
554714
Electronic books.
Machine Learning for Financial Market Forecasting.
LDR
:01921ntm a22004097 4500
001
1142023
005
20240414211924.5
006
m o d
007
cr mn ---uuuuu
008
250605s2023 xx obm 000 0 eng d
020
$a
9798379491109
035
$a
(MiAaPQ)AAI30486584
035
$a
AAI30486584
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Johnson, Jaya.
$3
1466168
245
1 0
$a
Machine Learning for Financial Market Forecasting.
264
0
$c
2023
300
$a
1 online resource (104 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 84-11.
500
$a
Advisor: Wang, Hongming.
502
$a
Thesis (A.L.M.)--Harvard University, 2023.
504
$a
Includes bibliographical references
520
$a
Stock market forecasting continues to be an active area of research. In recent years machine learning algorithms have been applied to achieve better predictions. Using natural language processing (NLP), contextual information from unstructured data including news feeds, analysts calls and other online content have been used as indicators to improve prediction rates. In this work we compare traditional machine learning methods with more recent ones, including LSTM and FinBERT to assess improvements, challenges and future directions.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Finance.
$3
559073
650
4
$a
Computer science.
$3
573171
653
$a
Stock market forecasting
653
$a
FinBERT
653
$a
Long short term memory
653
$a
Natural language processing
653
$a
Recurrent neural networks
653
$a
Support vector machine
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0508
690
$a
0800
710
2
$a
Harvard University.
$b
Extension Studies.
$3
1372761
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
84-11.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486584
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入