語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Airbnb Valuation : = A Machine Learning Approach.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Airbnb Valuation :/
其他題名:
A Machine Learning Approach.
作者:
Wyatt, Katherine.
面頁冊數:
1 online resource (189 pages)
附註:
Source: Masters Abstracts International, Volume: 85-07.
Contained By:
Masters Abstracts International85-07.
標題:
Information science. -
電子資源:
click for full text (PQDT)
ISBN:
9798381220087
Airbnb Valuation : = A Machine Learning Approach.
Wyatt, Katherine.
Airbnb Valuation :
A Machine Learning Approach. - 1 online resource (189 pages)
Source: Masters Abstracts International, Volume: 85-07.
Thesis (M.S.)--University of Arkansas, 2023.
Includes bibliographical references
This thesis uses a geospatially-enhanced, machine learning approach to investigate variations in rental success on the peer-to-peer property sharing website Airbnb.com. Geographic factors, listing attributes and amenities, customer response metrics, and host attributes are included in decision tree modeling to predict the short-term probability of receiving a review. The most important variables in increasing model accuracy are assessed and variations in the importance of these variables investigated using Shapley values.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798381220087Subjects--Topical Terms:
561178
Information science.
Subjects--Index Terms:
Game theoryIndex Terms--Genre/Form:
554714
Electronic books.
Airbnb Valuation : = A Machine Learning Approach.
LDR
:01819ntm a22003857 4500
001
1143002
005
20240513061043.5
006
m o d
007
cr mn ---uuuuu
008
250605s2023 xx obm 000 0 eng d
020
$a
9798381220087
035
$a
(MiAaPQ)AAI30686680
035
$a
AAI30686680
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Wyatt, Katherine.
$3
1467559
245
1 0
$a
Airbnb Valuation :
$b
A Machine Learning Approach.
264
0
$c
2023
300
$a
1 online resource (189 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-07.
500
$a
Advisor: Limp, Fred.
502
$a
Thesis (M.S.)--University of Arkansas, 2023.
504
$a
Includes bibliographical references
520
$a
This thesis uses a geospatially-enhanced, machine learning approach to investigate variations in rental success on the peer-to-peer property sharing website Airbnb.com. Geographic factors, listing attributes and amenities, customer response metrics, and host attributes are included in decision tree modeling to predict the short-term probability of receiving a review. The most important variables in increasing model accuracy are assessed and variations in the importance of these variables investigated using Shapley values.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Information science.
$3
561178
650
4
$a
Geography.
$3
654331
653
$a
Game theory
653
$a
Geospatial data science
653
$a
Machine learning
653
$a
Spatiotemporal analysis
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0366
690
$a
0723
690
$a
0800
710
2
$a
University of Arkansas.
$b
Geoscience.
$3
1467560
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
85-07.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30686680
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入