語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms./
作者:
Pan, Linying.
面頁冊數:
1 online resource (53 pages)
附註:
Source: Masters Abstracts International, Volume: 85-06.
Contained By:
Masters Abstracts International85-06.
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9798381112320
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms.
Pan, Linying.
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms.
- 1 online resource (53 pages)
Source: Masters Abstracts International, Volume: 85-06.
Thesis (M.S.)--University of California, Los Angeles, 2023.
Includes bibliographical references
Support Vector Machine (SVM) is a reliable supervised learning model extensively utilized for classification and regression tasks, owing to its remarkable ability to achieve strong generalization performance. This study focuses on two key factors in the SVM model: the error penalty parameter C and the kernel function. The C parameter is used to balance the model's complexity and empirical risk, and its selection is crucial for SVM performance. A smaller C value may lead to underfitting, while a larger C can result in overfitting. Additionally, the choice of the kernel function also significantly impacts SVM performance. We will investigate the effects of different kernel functions and parameter settings in the classification task of the Iris dataset and visualize their impacts through a visual approach. The study's results indicate that, in most cases, the Gaussian kernel outperforms other kernel functions, exhibiting superior classification performance and generalization capability. Therefore, we opt for the Gaussian Radial Basis Function (RBF) kernel and conduct experiments to evaluate the influence of different parameter configurations on classification performance.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798381112320Subjects--Topical Terms:
573171
Computer science.
Subjects--Index Terms:
ClassificationIndex Terms--Genre/Form:
554714
Electronic books.
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms.
LDR
:02579ntm a22003977 4500
001
1143690
005
20240517104631.5
006
m o d
007
cr mn ---uuuuu
008
250605s2023 xx obm 000 0 eng d
020
$a
9798381112320
035
$a
(MiAaPQ)AAI30814978
035
$a
AAI30814978
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Pan, Linying.
$3
1468460
245
1 0
$a
Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms.
264
0
$c
2023
300
$a
1 online resource (53 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-06.
500
$a
Advisor: Wu, Yingnian.
502
$a
Thesis (M.S.)--University of California, Los Angeles, 2023.
504
$a
Includes bibliographical references
520
$a
Support Vector Machine (SVM) is a reliable supervised learning model extensively utilized for classification and regression tasks, owing to its remarkable ability to achieve strong generalization performance. This study focuses on two key factors in the SVM model: the error penalty parameter C and the kernel function. The C parameter is used to balance the model's complexity and empirical risk, and its selection is crucial for SVM performance. A smaller C value may lead to underfitting, while a larger C can result in overfitting. Additionally, the choice of the kernel function also significantly impacts SVM performance. We will investigate the effects of different kernel functions and parameter settings in the classification task of the Iris dataset and visualize their impacts through a visual approach. The study's results indicate that, in most cases, the Gaussian kernel outperforms other kernel functions, exhibiting superior classification performance and generalization capability. Therefore, we opt for the Gaussian Radial Basis Function (RBF) kernel and conduct experiments to evaluate the influence of different parameter configurations on classification performance.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Statistics.
$3
556824
653
$a
Classification
653
$a
Error penalty parameter
653
$a
Generalization performance
653
$a
Kernel function
653
$a
Support Vector Machine
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0463
690
$a
0984
690
$a
0464
710
2
$a
University of California, Los Angeles.
$b
Statistics 0891.
$3
1183048
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
85-06.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30814978
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入