語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Minimum Turn Hamiltonian Paths on Rectangular Grids.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Minimum Turn Hamiltonian Paths on Rectangular Grids./
作者:
Golder, Kendall.
面頁冊數:
1 online resource (112 pages)
附註:
Source: Masters Abstracts International, Volume: 83-04.
Contained By:
Masters Abstracts International83-04.
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9798460437290
Minimum Turn Hamiltonian Paths on Rectangular Grids.
Golder, Kendall.
Minimum Turn Hamiltonian Paths on Rectangular Grids.
- 1 online resource (112 pages)
Source: Masters Abstracts International, Volume: 83-04.
Thesis (M.S.)--Emporia State University, 2021.
Includes bibliographical references
We solve the problem of finding Hamiltonian paths on rectangular grids that have the minimum possible number of turns. It is found that the minimum number of turns possible for a Hamiltonian path on an m x n rectangular grid is 2M-2, where M is the minimum of m and n. A method for enumerating minimum turn Hamiltonian paths is presented and a computer algorithm is used to count how many minimum turn Hamiltonian paths exist for M = 2,3,...,13. Additionally, a computer algorithm is used to list some minimum turn Hamiltonian paths. Lastly, a connection to stamp folding and meanders is found.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798460437290Subjects--Topical Terms:
573171
Computer science.
Subjects--Index Terms:
GridIndex Terms--Genre/Form:
554714
Electronic books.
Minimum Turn Hamiltonian Paths on Rectangular Grids.
LDR
:01956ntm a22004337 4500
001
1144221
005
20240531083802.5
006
m o d
007
cr mn ---uuuuu
008
250605s2021 xx obm 000 0 eng d
020
$a
9798460437290
035
$a
(MiAaPQ)AAI28769096
035
$a
AAI28769096
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Golder, Kendall.
$3
1469178
245
1 0
$a
Minimum Turn Hamiltonian Paths on Rectangular Grids.
264
0
$c
2021
300
$a
1 online resource (112 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 83-04.
500
$a
Advisor: Hollenbeck, Brian.
502
$a
Thesis (M.S.)--Emporia State University, 2021.
504
$a
Includes bibliographical references
520
$a
We solve the problem of finding Hamiltonian paths on rectangular grids that have the minimum possible number of turns. It is found that the minimum number of turns possible for a Hamiltonian path on an m x n rectangular grid is 2M-2, where M is the minimum of m and n. A method for enumerating minimum turn Hamiltonian paths is presented and a computer algorithm is used to count how many minimum turn Hamiltonian paths exist for M = 2,3,...,13. Additionally, a computer algorithm is used to list some minimum turn Hamiltonian paths. Lastly, a connection to stamp folding and meanders is found.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Theoretical mathematics.
$3
1180455
650
4
$a
Mathematics.
$3
527692
653
$a
Grid
653
$a
Hamiltonian
653
$a
Meanders
653
$a
Path
653
$a
Stamp folding
653
$a
Turn
653
$a
Permutation
653
$a
Lattice
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
690
$a
0642
690
$a
0984
710
2
$a
Emporia State University.
$b
Mathematics.
$3
1469179
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
83-04.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28769096
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入