語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?/
作者:
Venturi, Gianni.
面頁冊數:
1 online resource (194 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
Contained By:
Dissertations Abstracts International85-03B.
標題:
Medical imaging. -
電子資源:
click for full text (PQDT)
ISBN:
9798380182430
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?
Venturi, Gianni.
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?
- 1 online resource (194 pages)
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
Thesis (D.H.A.)--Franklin University, 2023.
Includes bibliographical references
Deep learning (DL) algorithms are prevalent in radiology as workflow assistants and as modality enhancements. Magnetic resonance imaging (MRI), computerized tomography (CT), diagnostic imaging (DI), ultrasound (US), and positron emission tomography (PET) are modalities that benefit from the DL algorithms and shorter exam times or greater image accuracy. Faster scan time is achieved by the signal to noise ratio (SNR). The distinction is that the technology can enhance images beyond the original resolution from the modality or shorten exam time and rebuild the image quality through SNR algorithms back to approximately the original standard of care (SOC) image. While artificial intelligence signal to noise ratio algorithms (AI-SNR) can enhance an image to a greater accuracy, shorter exam times are a measurable component of a return on investment (ROI) in calculating modality utilization. The algorithm-derived images may have visual variations that are not found on normally acquired original images. The research focused on DL-SNR images on a three-tesla magnetic resonance imaging (3.0T MRI) unit, a high resolution MRI deployment in the industry. The primary research question for this research study is: What are radiologists' perceptions in regard to image quality and increased utilization due to vendor provided DL-SNR on 3.0T MRI? This will be an exploratory qualitative research study using detailed interviews with fellowship-trained radiologists that are using AI-SNR in 3.0T MRI and shortened exam time protocols. Fifteen interviews were conducted. The interview transcriptions were coded using ATLAS.ti to identify common themes and sub-themes in the radiologists' perceptions of DL-SNR imaging. This paper assumes the reader has an adequate understanding of deep learning and radiology processes. The interviews included discussions on key elements on image quality, workflow, reimbursement, legal concerns, and radiologist workload. Issues were identified and potential solutions for optimizations were rendered.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798380182430Subjects--Topical Terms:
1180167
Medical imaging.
Subjects--Index Terms:
Signal to noise ratioIndex Terms--Genre/Form:
554714
Electronic books.
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?
LDR
:03532ntm a22003857 4500
001
1146640
005
20240812064703.5
006
m o d
007
cr bn ---uuuuu
008
250605s2023 xx obm 000 0 eng d
020
$a
9798380182430
035
$a
(MiAaPQ)AAI30723717
035
$a
(MiAaPQ)OhioLINKfrank1690903539000906
035
$a
AAI30723717
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Venturi, Gianni.
$3
1472070
245
1 0
$a
What Are Radiologists' Perceptions in Regard to Image Quality and Increased Utilization Due to Vendor Provided Deep Learning Signal to Noise Ratio and Deep Learning Reconstruction on 3.0T Magnetic Resonance Imaging?
264
0
$c
2023
300
$a
1 online resource (194 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
502
$a
Thesis (D.H.A.)--Franklin University, 2023.
504
$a
Includes bibliographical references
520
$a
Deep learning (DL) algorithms are prevalent in radiology as workflow assistants and as modality enhancements. Magnetic resonance imaging (MRI), computerized tomography (CT), diagnostic imaging (DI), ultrasound (US), and positron emission tomography (PET) are modalities that benefit from the DL algorithms and shorter exam times or greater image accuracy. Faster scan time is achieved by the signal to noise ratio (SNR). The distinction is that the technology can enhance images beyond the original resolution from the modality or shorten exam time and rebuild the image quality through SNR algorithms back to approximately the original standard of care (SOC) image. While artificial intelligence signal to noise ratio algorithms (AI-SNR) can enhance an image to a greater accuracy, shorter exam times are a measurable component of a return on investment (ROI) in calculating modality utilization. The algorithm-derived images may have visual variations that are not found on normally acquired original images. The research focused on DL-SNR images on a three-tesla magnetic resonance imaging (3.0T MRI) unit, a high resolution MRI deployment in the industry. The primary research question for this research study is: What are radiologists' perceptions in regard to image quality and increased utilization due to vendor provided DL-SNR on 3.0T MRI? This will be an exploratory qualitative research study using detailed interviews with fellowship-trained radiologists that are using AI-SNR in 3.0T MRI and shortened exam time protocols. Fifteen interviews were conducted. The interview transcriptions were coded using ATLAS.ti to identify common themes and sub-themes in the radiologists' perceptions of DL-SNR imaging. This paper assumes the reader has an adequate understanding of deep learning and radiology processes. The interviews included discussions on key elements on image quality, workflow, reimbursement, legal concerns, and radiologist workload. Issues were identified and potential solutions for optimizations were rendered.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Medical imaging.
$3
1180167
650
4
$a
Computer science.
$3
573171
653
$a
Signal to noise ratio
653
$a
Standard of care image
653
$a
Radiologists
653
$a
Deep learning
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0574
690
$a
0800
710
2
$a
Franklin University.
$b
Health Programs.
$3
1472071
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Dissertations Abstracts International
$g
85-03B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30723717
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入