語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Malware Detection and Classification Using Different Neural Networks.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Malware Detection and Classification Using Different Neural Networks./
作者:
Richie, Imafidon Abiola.
面頁冊數:
1 online resource (74 pages)
附註:
Source: Masters Abstracts International, Volume: 85-11.
Contained By:
Masters Abstracts International85-11.
標題:
Computer engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9798382607238
Malware Detection and Classification Using Different Neural Networks.
Richie, Imafidon Abiola.
Malware Detection and Classification Using Different Neural Networks.
- 1 online resource (74 pages)
Source: Masters Abstracts International, Volume: 85-11.
Thesis (M.S.)--Western Illinois University, 2024.
Includes bibliographical references
This study, portrayed in this thesis, aims to investigate the effectiveness of various neural network (NN) architectures for malware detection and classification. The study's scholar utilized a dataset sourced from Kaggle, comprising diverse malware types, the research employs Convolutional Neural Networks (CNN), Recurrent NN (RNN), and Artificial NN (ANN). Results demonstrate CNN's superior performance in accuracy and F1-score, attributed to its ability to extract hierarchical features from image data. RNNs and ANNs exhibit comparatively lower efficiency due to limitations in spatial awareness and sequential modeling. The study underscores the significance of NN architecture in malware identification, highlighting CNN's robustness in capturing subtle malware patterns. Future research avenues include refining NN structures for image-based malware detection and optimizing training data quality and hyperparameter tuning for enhanced model performance.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798382607238Subjects--Topical Terms:
569006
Computer engineering.
Subjects--Index Terms:
Deep learningIndex Terms--Genre/Form:
554714
Electronic books.
Malware Detection and Classification Using Different Neural Networks.
LDR
:02331ntm a22003977 4500
001
1147885
005
20240916075422.5
006
m o d
007
cr bn ---uuuuu
008
250605s2024 xx obm 000 0 eng d
020
$a
9798382607238
035
$a
(MiAaPQ)AAI31292990
035
$a
AAI31292990
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Richie, Imafidon Abiola.
$3
1473721
245
1 0
$a
Malware Detection and Classification Using Different Neural Networks.
264
0
$c
2024
300
$a
1 online resource (74 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-11.
500
$a
Advisor: Razzaque, Anjum.
502
$a
Thesis (M.S.)--Western Illinois University, 2024.
504
$a
Includes bibliographical references
520
$a
This study, portrayed in this thesis, aims to investigate the effectiveness of various neural network (NN) architectures for malware detection and classification. The study's scholar utilized a dataset sourced from Kaggle, comprising diverse malware types, the research employs Convolutional Neural Networks (CNN), Recurrent NN (RNN), and Artificial NN (ANN). Results demonstrate CNN's superior performance in accuracy and F1-score, attributed to its ability to extract hierarchical features from image data. RNNs and ANNs exhibit comparatively lower efficiency due to limitations in spatial awareness and sequential modeling. The study underscores the significance of NN architecture in malware identification, highlighting CNN's robustness in capturing subtle malware patterns. Future research avenues include refining NN structures for image-based malware detection and optimizing training data quality and hyperparameter tuning for enhanced model performance.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Computer science.
$3
573171
653
$a
Deep learning
653
$a
Malware classification
653
$a
Malware detection
653
$a
Convolutional Neural Networks
653
$a
Hyperparameter tuning
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0464
690
$a
0800
710
2
$a
Western Illinois University.
$b
Computer Science.
$3
1473722
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
85-11.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31292990
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入