語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Micro-Engineering the Biomechanical Niche for Brain Organoids.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Micro-Engineering the Biomechanical Niche for Brain Organoids./
作者:
Aslani, Saba.
面頁冊數:
1 online resource (69 pages)
附註:
Source: Masters Abstracts International, Volume: 82-10.
Contained By:
Masters Abstracts International82-10.
標題:
Membranes. -
電子資源:
click for full text (PQDT)
ISBN:
9798708718808
Micro-Engineering the Biomechanical Niche for Brain Organoids.
Aslani, Saba.
Micro-Engineering the Biomechanical Niche for Brain Organoids.
- 1 online resource (69 pages)
Source: Masters Abstracts International, Volume: 82-10.
Thesis (M.Sc.)--McGill University (Canada), 2020.
Includes bibliographical references
Brain organoids represent a robust model system that offers various potential applications in drug screening and disease modeling. Experimental control over brain organoid cultures is in part limited by variability of the physical properties of the culture environment. Matrigel, a soluble basement membrane-rich extract is currently the gold standard material for organoid development. It supports organoid formation by providing both the structural scaffold and the source of signals influencing various biological functions, namely tissue polarity and cell migration. However, Matrigel suffers from considerable variability and poor mechanical properties prompting the search for more reproducible ECM-mimetics for brain organoid culture. To enhance the gel mechanics while keeping the source of adhesive signaling cues, we chose to add a mechanically tunable polymer Alginate to Matrigel. In this project, we demonstrated that adding Alginate to Matrigel enhances the microstructure and viscoelasticity of the resulting hybrid hydrogels. Our results suggest that Matrigel's high variability in composition is also depicted in its viscoelastic behavior. We have also shown that Alginate can have similar viscoelastic behavior to Matrigel with concentrations of 1% to 2% Alginate (w/v). Furthermore, our findings interestingly show that Matrigel 50%/Alginate 1% hybrid hydrogels are more viscoelastic than Matrigel 50% and Alginate 1% alone. This work highlights the potentials of Alginate as a simple-to-use and inexpensive polymer with the final goal of having more consistent brain organoid cultures.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798708718808Subjects--Topical Terms:
783464
Membranes.
Subjects--Index Terms:
Micro-engineeringIndex Terms--Genre/Form:
554714
Electronic books.
Micro-Engineering the Biomechanical Niche for Brain Organoids.
LDR
:04765ntm a22003737 4500
001
1147937
005
20240916065942.5
006
m o d
007
cr bn ---uuuuu
008
250605s2020 xx obm 000 0 eng d
020
$a
9798708718808
035
$a
(MiAaPQ)AAI28383696
035
$a
(MiAaPQ)McGill_tt44ps379
035
$a
AAI28383696
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Aslani, Saba.
$3
1473787
245
1 0
$a
Micro-Engineering the Biomechanical Niche for Brain Organoids.
264
0
$c
2020
300
$a
1 online resource (69 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 82-10.
500
$a
Advisor: Durcan, Thomas.
502
$a
Thesis (M.Sc.)--McGill University (Canada), 2020.
504
$a
Includes bibliographical references
520
$a
Brain organoids represent a robust model system that offers various potential applications in drug screening and disease modeling. Experimental control over brain organoid cultures is in part limited by variability of the physical properties of the culture environment. Matrigel, a soluble basement membrane-rich extract is currently the gold standard material for organoid development. It supports organoid formation by providing both the structural scaffold and the source of signals influencing various biological functions, namely tissue polarity and cell migration. However, Matrigel suffers from considerable variability and poor mechanical properties prompting the search for more reproducible ECM-mimetics for brain organoid culture. To enhance the gel mechanics while keeping the source of adhesive signaling cues, we chose to add a mechanically tunable polymer Alginate to Matrigel. In this project, we demonstrated that adding Alginate to Matrigel enhances the microstructure and viscoelasticity of the resulting hybrid hydrogels. Our results suggest that Matrigel's high variability in composition is also depicted in its viscoelastic behavior. We have also shown that Alginate can have similar viscoelastic behavior to Matrigel with concentrations of 1% to 2% Alginate (w/v). Furthermore, our findings interestingly show that Matrigel 50%/Alginate 1% hybrid hydrogels are more viscoelastic than Matrigel 50% and Alginate 1% alone. This work highlights the potentials of Alginate as a simple-to-use and inexpensive polymer with the final goal of having more consistent brain organoid cultures.
520
$a
Les organoides cerebraux constituent un modele de recherche robuste aux applications diverses telles que la modelisation de maladies et le criblage de medicaments potentiels. Le controle de l'experimentateur sur les cultures d'organoides cerebraux est en partie limite par la variabilite des proprietes physiques de l'environnement de culture. Le Matrigel - un extrait soluble, riche en membrane basale- constitue le milieu de reference utilise pour la culture d'organoides. Il fournit a la fois un echafaudage et une source de signaux influencant des fonctions biologiques telles que la polarite tissulaire et la migration cellulaire. Cependant, le Matrigel presente une grande variabilite et des proprietes mecaniques inadequates, incitant a trouver de nouveaux milieux qui miment la matrice extra-cellulaire (MEC) de maniere plus reproductible. Afin d'ameliorer les proprietes mecaniques tout en conservant la source de signaux d'adhesion cellulaire, nous avons choisi d'ajouter un polymere aux proprietes mecaniques ajustables - l'Alginate - au Matrigel. Ici, nous demontrons que l'ajout d'Alginate au Matrigel ameliore la microstructure et la viscoelasticite des hydrogels hybrides resultants. Nos resultats suggerent que la forte variabilite de Matrigel dans la composition est egalement representee dans son comportement viscoelastique. Nous avons egalement montre que l'Alginate peut avoir un comportement viscoelastique similaire au Matrigel avec des concentrations de 1% a 2% d'alginate (m / v). En outre, nos resultats montrent de maniere interessante que les hydrogels hybrides Matrigel 50% / Alginate 1% sont plus viscoelastiques que Matrigel 50% et Alginate 1% seuls. Ce travail met en evidence le potentiel de l'Alginate en tant que polymere simple d'utilisation et bon marche dans le but final d'obtenir des cultures organoides cerebrales plus coherent.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Membranes.
$3
783464
650
4
$a
Polymers.
$3
561233
650
4
$a
Viscoelasticity.
$3
527975
650
4
$a
Brain research.
$3
1372495
650
4
$a
Biomechanics.
$3
565307
650
4
$a
Hydrogels.
$3
934121
650
4
$a
Scanning electron microscopy.
$3
768680
653
$a
Micro-engineering
653
$a
Biomechanical niche
653
$a
Brain organoids
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0317
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
McGill University (Canada).
$3
845629
773
0
$t
Masters Abstracts International
$g
82-10.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28383696
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入