語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stable Torsion Length.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Stable Torsion Length./
作者:
Avery, Chloe I.
面頁冊數:
1 online resource (69 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
Contained By:
Dissertations Abstracts International83-10B.
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9798209937425
Stable Torsion Length.
Avery, Chloe I.
Stable Torsion Length.
- 1 online resource (69 pages)
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
Thesis (Ph.D.)--The University of Chicago, 2022.
Includes bibliographical references
The stable torsion length in a group is the stable word length with respect to the set of all torsion elements. We show that the stable torsion length vanishes in crystallographic groups. We then give a linear programming algorithm to compute a lower bound for stable torsion length in free products of groups. Moreover, we obtain an algorithm that exactly computes stable torsion length in free products of finite abelian groups. The nature of the algorithm shows that stable torsion length is rational in this case. As applications, we give the first exact computations of stable torsion length for nontrivial examples.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798209937425Subjects--Topical Terms:
527692
Mathematics.
Subjects--Index Terms:
AlgebraIndex Terms--Genre/Form:
554714
Electronic books.
Stable Torsion Length.
LDR
:01850ntm a22003617 4500
001
1148131
005
20240916070007.5
006
m o d
007
cr bn ---uuuuu
008
250605s2022 xx obm 000 0 eng d
020
$a
9798209937425
035
$a
(MiAaPQ)AAI28961919
035
$a
AAI28961919
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Avery, Chloe I.
$3
1474035
245
1 0
$a
Stable Torsion Length.
264
0
$c
2022
300
$a
1 online resource (69 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
500
$a
Advisor: Farb, Benson.
502
$a
Thesis (Ph.D.)--The University of Chicago, 2022.
504
$a
Includes bibliographical references
520
$a
The stable torsion length in a group is the stable word length with respect to the set of all torsion elements. We show that the stable torsion length vanishes in crystallographic groups. We then give a linear programming algorithm to compute a lower bound for stable torsion length in free products of groups. Moreover, we obtain an algorithm that exactly computes stable torsion length in free products of finite abelian groups. The nature of the algorithm shows that stable torsion length is rational in this case. As applications, we give the first exact computations of stable torsion length for nontrivial examples.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
653
$a
Algebra
653
$a
Geometric group theory
653
$a
Geometry
653
$a
Mathematics
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Chicago.
$b
Mathematics.
$3
1180611
773
0
$t
Dissertations Abstracts International
$g
83-10B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28961919
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入