語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare./
作者:
Sutherland, Hayley L.
面頁冊數:
1 online resource (125 pages)
附註:
Source: Masters Abstracts International, Volume: 85-05.
Contained By:
Masters Abstracts International85-05.
標題:
Physiology. -
電子資源:
click for full text (PQDT)
ISBN:
9798380723381
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare.
Sutherland, Hayley L.
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare.
- 1 online resource (125 pages)
Source: Masters Abstracts International, Volume: 85-05.
Thesis (M.S.)--Purdue University, 2023.
Includes bibliographical references
Broiler chickens are routinely exposed to various conditions, such as heat stress and stocking density, which may negatively influence their welfare status. This study examined the influence of a commercially available proprietary phytogenic feed additive (Probiotech International, Inc.) on welfare measures, environmental measures, productivity, body temperature, and behavior of commercial broiler chickens. Two flocks (Trials 1 & 2) utilized a total of 1,650 Ross 708 broilers housed in two separate rooms with floor pens at Purdue University's ASREC Poultry Unit.Trial 1 birds (n = 750) were divided into 20 separate pens (5 pens/treatment): PHD: phytogenic supplementation and raised at standard industry stocking density (37 kg/m²), PLD: phytogenic supplementation and raised at a lowered stocking density (27 kg/m²), CHD: control diet and raised at standard industry stocking density, and CLD: control diet and raised at a lowered stocking density. Due to the aromatic properties of the phytogenic additive, PHD and PLD birds were housed in one room and CHD and CLD birds were housed in another room. The feed supplement was mixed in at an inclusion rate of 0.25 g/kg. Phytogenic supplementation began at 15 d, coinciding with feeding the grower diet, and continued until 42 d when the study concluded. Heat stress was applied to all birds from 30 to 32 d, where the peak temperature did not exceed 34.4ºC. Welfare measures (gait, footpad dermatitis, hock burn, and feather cleanliness) and litter quality were assessed at 27 d and 39 d. Ammonia concentrations were measured at 35 d and 39 d. Productivity (body weight, feed intake, and feed conversion ratio) was measured weekly. Body temperature via thermography of the eye surface was collected at 29, 32, and 34 d. Behavior data were collected at the following periods for 2 continuous days: 23-24 d (Period 1), 31-32 d (Period 2), and 36-37 d (Period 3).Trial 2 birds (n = 900) were assigned to 25 separate pens (5 pens/treatment) with the same groups as Trial 1, with an additional group (MHD): control diet, housed in the same room as PHD and PLD birds, and raised at standard industry stocking density. Phytogenic supplementation was provided as in Trial 1. Heat stress was again applied to all treatments from 30 to 32 d, where the peak temperature did not exceed 31ºC. Welfare measures and litter quality were collected at 27 d and 38 d. Ammonia concentrations were measured at 27, 31, and 38 d. Productivity was measured from 15 d to 27 d (grower phase), and 27 d to 38 d (finisher phase). Body temperature via cloacal temperature recording occurred at 29, 31, and 33 d.Welfare data and litter quality were analyzed using PROC LOGISTIC (SAS 9.4); productivity data were analyzed using PROC MIXED (SAS 9.4); behavior data were analyzed using PROC GLIMMIX (SAS 9.4); and eye surface temperature, cloacal temperature, and ammonia concentration were analyzed using a nested mixed model found in the afex package using R (version 4.2.1) and R Studio (R Foundation for Statistical Computing). All statistical differences were considered significant when P < 0.05. Results of Trial 1 indicated that phytogenic supplementation significantly influenced hock burn and feather cleanliness, body weight and feed conversion ratio, ammonia concentration, as well as Period 1 sitting, Period 2 drinking, preening, standing, and wing spreading, and Period 3 drinking, preening, sitting, standing, and walking behaviors. Results of Trial 2 indicated that diet had no effect on any measured parameter. The variation in results suggests that factors such as stocking density or management strategies influenced the measured parameters, rather than diet alone. More research is needed to understand the specific effects of phytogenic feed additives, social and environmental stressors and whether phytogenic feed additives can improve bird performance and welfare under longer heat stress periods.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798380723381Subjects--Topical Terms:
673386
Physiology.
Index Terms--Genre/Form:
554714
Electronic books.
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare.
LDR
:05193ntm a22003617 4500
001
1149803
005
20241022110516.5
006
m o d
007
cr bn ---uuuuu
008
250605s2023 xx obm 000 0 eng d
020
$a
9798380723381
035
$a
(MiAaPQ)AAI30685506
035
$a
(MiAaPQ)Purdue23713251
035
$a
AAI30685506
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Sutherland, Hayley L.
$3
1476153
245
1 0
$a
Influence of a Phytogenic Feed Additive on Broiler Chicken Behavior and Welfare.
264
0
$c
2023
300
$a
1 online resource (125 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-05.
500
$a
Advisor: Erasmus, Marisa.
502
$a
Thesis (M.S.)--Purdue University, 2023.
504
$a
Includes bibliographical references
520
$a
Broiler chickens are routinely exposed to various conditions, such as heat stress and stocking density, which may negatively influence their welfare status. This study examined the influence of a commercially available proprietary phytogenic feed additive (Probiotech International, Inc.) on welfare measures, environmental measures, productivity, body temperature, and behavior of commercial broiler chickens. Two flocks (Trials 1 & 2) utilized a total of 1,650 Ross 708 broilers housed in two separate rooms with floor pens at Purdue University's ASREC Poultry Unit.Trial 1 birds (n = 750) were divided into 20 separate pens (5 pens/treatment): PHD: phytogenic supplementation and raised at standard industry stocking density (37 kg/m²), PLD: phytogenic supplementation and raised at a lowered stocking density (27 kg/m²), CHD: control diet and raised at standard industry stocking density, and CLD: control diet and raised at a lowered stocking density. Due to the aromatic properties of the phytogenic additive, PHD and PLD birds were housed in one room and CHD and CLD birds were housed in another room. The feed supplement was mixed in at an inclusion rate of 0.25 g/kg. Phytogenic supplementation began at 15 d, coinciding with feeding the grower diet, and continued until 42 d when the study concluded. Heat stress was applied to all birds from 30 to 32 d, where the peak temperature did not exceed 34.4ºC. Welfare measures (gait, footpad dermatitis, hock burn, and feather cleanliness) and litter quality were assessed at 27 d and 39 d. Ammonia concentrations were measured at 35 d and 39 d. Productivity (body weight, feed intake, and feed conversion ratio) was measured weekly. Body temperature via thermography of the eye surface was collected at 29, 32, and 34 d. Behavior data were collected at the following periods for 2 continuous days: 23-24 d (Period 1), 31-32 d (Period 2), and 36-37 d (Period 3).Trial 2 birds (n = 900) were assigned to 25 separate pens (5 pens/treatment) with the same groups as Trial 1, with an additional group (MHD): control diet, housed in the same room as PHD and PLD birds, and raised at standard industry stocking density. Phytogenic supplementation was provided as in Trial 1. Heat stress was again applied to all treatments from 30 to 32 d, where the peak temperature did not exceed 31ºC. Welfare measures and litter quality were collected at 27 d and 38 d. Ammonia concentrations were measured at 27, 31, and 38 d. Productivity was measured from 15 d to 27 d (grower phase), and 27 d to 38 d (finisher phase). Body temperature via cloacal temperature recording occurred at 29, 31, and 33 d.Welfare data and litter quality were analyzed using PROC LOGISTIC (SAS 9.4); productivity data were analyzed using PROC MIXED (SAS 9.4); behavior data were analyzed using PROC GLIMMIX (SAS 9.4); and eye surface temperature, cloacal temperature, and ammonia concentration were analyzed using a nested mixed model found in the afex package using R (version 4.2.1) and R Studio (R Foundation for Statistical Computing). All statistical differences were considered significant when P < 0.05. Results of Trial 1 indicated that phytogenic supplementation significantly influenced hock burn and feather cleanliness, body weight and feed conversion ratio, ammonia concentration, as well as Period 1 sitting, Period 2 drinking, preening, standing, and wing spreading, and Period 3 drinking, preening, sitting, standing, and walking behaviors. Results of Trial 2 indicated that diet had no effect on any measured parameter. The variation in results suggests that factors such as stocking density or management strategies influenced the measured parameters, rather than diet alone. More research is needed to understand the specific effects of phytogenic feed additives, social and environmental stressors and whether phytogenic feed additives can improve bird performance and welfare under longer heat stress periods.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Physiology.
$3
673386
650
4
$a
Medicine.
$3
644133
650
4
$a
Dermatology.
$3
669082
650
4
$a
Animal sciences.
$3
1178863
650
4
$a
Poultry.
$3
1293560
650
4
$a
Birds.
$3
578826
650
4
$a
Walking.
$3
632571
650
4
$a
Diet.
$3
582195
650
4
$a
Body temperature.
$3
582994
650
4
$a
Additives.
$3
1475197
650
4
$a
Domestication.
$3
1341185
650
4
$a
Feeds.
$3
590532
650
4
$a
Dermatitis.
$3
582950
650
4
$a
Animal welfare.
$3
570810
650
4
$a
Behavior.
$3
582559
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0475
690
$a
0757
690
$a
0564
690
$a
0719
710
2
$a
Purdue University.
$3
1184550
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
85-05.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30685506
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入