語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fraud Detection in Vehicle Insurance Claims Using Machine Learning.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Fraud Detection in Vehicle Insurance Claims Using Machine Learning./
作者:
Zhang, Ziyang.
面頁冊數:
1 online resource (48 pages)
附註:
Source: Masters Abstracts International, Volume: 85-12.
Contained By:
Masters Abstracts International85-12.
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9798382772134
Fraud Detection in Vehicle Insurance Claims Using Machine Learning.
Zhang, Ziyang.
Fraud Detection in Vehicle Insurance Claims Using Machine Learning.
- 1 online resource (48 pages)
Source: Masters Abstracts International, Volume: 85-12.
Thesis (M.S.)--University of California, Los Angeles, 2024.
Includes bibliographical references
Insurance fraud poses a significant financial burden on the industry, with fraudulent vehicle insurance claims being a major contributor. This study explores the application of machine learning techniques to accurately detect fraudulent vehicle insurance claims. Six different models - Logistic Regression, Random Forest, Gaussian Naive Bayes, Decision Tree, XGBoost, and Gradient Boosting classifiers - are evaluated on an imbalanced dataset. To address class imbalance, oversampling techniques like SMOTE, Borderline SMOTE, and ADASYN are employed. Performance is assessed using metrics such as F1 score, recall, and AUC. Results indicate that XGBoost and Gradient Boosting models demonstrate superior overall performance, effectively balancing precision and recall. The Gaussian Naive Bayes model exhibits exceptional recall, making it suitable for minimizing missed fraud cases.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798382772134Subjects--Topical Terms:
573171
Computer science.
Subjects--Index Terms:
Fraud detectionIndex Terms--Genre/Form:
554714
Electronic books.
Fraud Detection in Vehicle Insurance Claims Using Machine Learning.
LDR
:02182ntm a22003737 4500
001
1152210
005
20241122094156.5
006
m o d
007
cr mn ---uuuuu
008
250605s2024 xx obm 000 0 eng d
020
$a
9798382772134
035
$a
(MiAaPQ)AAI31301766
035
$a
AAI31301766
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Zhang, Ziyang.
$3
1479118
245
1 0
$a
Fraud Detection in Vehicle Insurance Claims Using Machine Learning.
264
0
$c
2024
300
$a
1 online resource (48 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-12.
500
$a
Advisor: Wu, Yingnian.
502
$a
Thesis (M.S.)--University of California, Los Angeles, 2024.
504
$a
Includes bibliographical references
520
$a
Insurance fraud poses a significant financial burden on the industry, with fraudulent vehicle insurance claims being a major contributor. This study explores the application of machine learning techniques to accurately detect fraudulent vehicle insurance claims. Six different models - Logistic Regression, Random Forest, Gaussian Naive Bayes, Decision Tree, XGBoost, and Gradient Boosting classifiers - are evaluated on an imbalanced dataset. To address class imbalance, oversampling techniques like SMOTE, Borderline SMOTE, and ADASYN are employed. Performance is assessed using metrics such as F1 score, recall, and AUC. Results indicate that XGBoost and Gradient Boosting models demonstrate superior overall performance, effectively balancing precision and recall. The Gaussian Naive Bayes model exhibits exceptional recall, making it suitable for minimizing missed fraud cases.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Statistics.
$3
556824
653
$a
Fraud detection
653
$a
Vehicle insurance
653
$a
Machine learning
653
$a
Logistic regression
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0463
690
$a
0984
710
2
$a
University of California, Los Angeles.
$b
Statistics 0891.
$3
1183048
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
773
0
$t
Masters Abstracts International
$g
85-12.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31301766
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入