語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Navigating molecular networks
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Navigating molecular networks/ by N. Sukumar.
作者:
Sukumar, N.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xviii, 114 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Molecular theory. -
電子資源:
https://doi.org/10.1007/978-3-031-76290-1
ISBN:
9783031762901
Navigating molecular networks
Sukumar, N.
Navigating molecular networks
[electronic resource] /by N. Sukumar. - Cham :Springer Nature Switzerland :2024. - xviii, 114 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in materials,2192-1105. - SpringerBriefs in materials..
Molecular Networks -- Transformations of Chemical Space -- Spectral Graph Theory -- Universality and Random Matrix Theory -- Mapping and Navigating Chemical Space Networks -- Generative AI - Growing the Network -- Discovery and Creativity.
This book delves into the foundational principles governing the treatment of molecular networks and "chemical space"-the comprehensive domain encompassing all physically achievable molecules-from the perspectives of vector space, graph theory, and data science. It explores similarity kernels, network measures, spectral graph theory, and random matrix theory, weaving intriguing connections between these diverse subjects. Notably, it emphasizes the visualization of molecular networks. The exploration continues by delving into contemporary generative deep learning models, increasingly pivotal in the pursuit of new materials possessing specific properties, showcasing some of the most compelling advancements in this field. Concluding with a discussion on the meanings of discovery, creativity, and the role of artificial intelligence (AI) therein. Its primary audience comprises senior undergraduate and graduate students specializing in physics, chemistry, and materials science. Additionally, it caters to those interested in the potential transformation of material discovery through computational, network, AI, and machine learning (ML) methodologies.
ISBN: 9783031762901
Standard No.: 10.1007/978-3-031-76290-1doiSubjects--Topical Terms:
636402
Molecular theory.
LC Class. No.: QD461
Dewey Class. No.: 541.22
Navigating molecular networks
LDR
:02403nam a2200337 a 4500
001
1153189
003
DE-He213
005
20250123120020.0
006
m o d
007
cr nn 008maaau
008
250618s2024 sz s 0 eng d
020
$a
9783031762901
$q
(electronic bk.)
020
$a
9783031762895
$q
(paper)
024
7
$a
10.1007/978-3-031-76290-1
$2
doi
035
$a
978-3-031-76290-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD461
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHS
$2
thema
082
0 4
$a
541.22
$2
23
090
$a
QD461
$b
.S948 2024
100
1
$a
Sukumar, N.
$3
1480420
245
1 0
$a
Navigating molecular networks
$h
[electronic resource] /
$c
by N. Sukumar.
260
$a
Cham :
$c
2024.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xviii, 114 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in materials,
$x
2192-1105
505
0
$a
Molecular Networks -- Transformations of Chemical Space -- Spectral Graph Theory -- Universality and Random Matrix Theory -- Mapping and Navigating Chemical Space Networks -- Generative AI - Growing the Network -- Discovery and Creativity.
520
$a
This book delves into the foundational principles governing the treatment of molecular networks and "chemical space"-the comprehensive domain encompassing all physically achievable molecules-from the perspectives of vector space, graph theory, and data science. It explores similarity kernels, network measures, spectral graph theory, and random matrix theory, weaving intriguing connections between these diverse subjects. Notably, it emphasizes the visualization of molecular networks. The exploration continues by delving into contemporary generative deep learning models, increasingly pivotal in the pursuit of new materials possessing specific properties, showcasing some of the most compelling advancements in this field. Concluding with a discussion on the meanings of discovery, creativity, and the role of artificial intelligence (AI) therein. Its primary audience comprises senior undergraduate and graduate students specializing in physics, chemistry, and materials science. Additionally, it caters to those interested in the potential transformation of material discovery through computational, network, AI, and machine learning (ML) methodologies.
650
0
$a
Molecular theory.
$3
636402
650
0
$a
Molecular structure.
$3
592550
650
1 4
$a
Statistical Physics.
$3
670714
650
2 4
$a
Molecular Biophysics.
$3
1430063
650
2 4
$a
Graph Theory.
$3
786670
650
2 4
$a
Stochastic Networks.
$3
1390161
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Soft Materials.
$3
1366343
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in materials.
$3
883946
856
4 0
$u
https://doi.org/10.1007/978-3-031-76290-1
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入