語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lectures on optimal transport
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Lectures on optimal transport/ by Luigi Ambrosio, Elia Brué, Daniele Semola.
作者:
Ambrosio, Luigi.
其他作者:
Semola, Daniele.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xi, 260 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-031-76834-7
ISBN:
9783031768347
Lectures on optimal transport
Ambrosio, Luigi.
Lectures on optimal transport
[electronic resource] /by Luigi Ambrosio, Elia Brué, Daniele Semola. - Second edition. - Cham :Springer Nature Switzerland :2024. - xi, 260 p. :ill. (some col.), digital ;24 cm. - UNITEXT. La matematica per il 3+2,v. 1692038-5757 ;. - UNITEXT.La matematica per il 3+2 ;v. 139..
- 1. Lecture I. Preliminary notions and the Monge problem -- 2. Lecture II. The Kantorovich problem -- 3. Lecture III. The Kantorovich - Rubinstein duality -- 4. Lecture IV. Necessary and sufficient optimality conditions -- 5. Lecture V. Existence of optimal maps and applications -- 6. Lecture VI. A proof of the isoperimetric inequality and stability in Optimal Transport -- 7. Lecture VII. The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8. Lecture VIII. The metric side of Optimal Transport -- 9. Lecture IX. Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10. Lecture X.Wasserstein geodesics, nonbranching and curvature -- 11. Lecture XI. Gradient flows: an introduction -- 12. Lecture XII. Gradient flows: the Brézis-Komura theorem -- 13. Lecture XIII. Examples of gradient flows in PDEs -- 14. Lecture XIV. Gradient flows: the EDE and EDI formulations -- 15. Lecture XV. Semicontinuity and convexity of energies in the Wasserstein space -- 16. Lecture XVI. The Continuity Equation and the Hopf-Lax semigroup -- 17. Lecture XVII. The Benamou-Brenier formula -- 18. Lecture XVIII. An introduction to Otto's calculus -- 19. Lecture XIX. Heat flow, Optimal Transport and Ricci curvature.
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations. This is the second edition of the book, first published in 2018. It includes refinement of proofs, an updated bibliography and a more detailed discussion of minmax principles, with the aim of giving two fully self-contained proofs of Kantorovich duality.
ISBN: 9783031768347
Standard No.: 10.1007/978-3-031-76834-7doiSubjects--Topical Terms:
527692
Mathematics.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Lectures on optimal transport
LDR
:03376nam a2200349 a 4500
001
1153961
003
DE-He213
005
20241229115300.0
006
m d
007
cr nn 008maaau
008
250619s2024 sz s 0 eng d
020
$a
9783031768347
$q
(electronic bk.)
020
$a
9783031768330
$q
(paper)
024
7
$a
10.1007/978-3-031-76834-7
$2
doi
035
$a
978-3-031-76834-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.A496 2024
100
1
$a
Ambrosio, Luigi.
$3
672572
245
1 0
$a
Lectures on optimal transport
$h
[electronic resource] /
$c
by Luigi Ambrosio, Elia Brué, Daniele Semola.
250
$a
Second edition.
260
$a
Cham :
$c
2024.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xi, 260 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
UNITEXT. La matematica per il 3+2,
$x
2038-5757 ;
$v
v. 169
505
0
$a
- 1. Lecture I. Preliminary notions and the Monge problem -- 2. Lecture II. The Kantorovich problem -- 3. Lecture III. The Kantorovich - Rubinstein duality -- 4. Lecture IV. Necessary and sufficient optimality conditions -- 5. Lecture V. Existence of optimal maps and applications -- 6. Lecture VI. A proof of the isoperimetric inequality and stability in Optimal Transport -- 7. Lecture VII. The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8. Lecture VIII. The metric side of Optimal Transport -- 9. Lecture IX. Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10. Lecture X.Wasserstein geodesics, nonbranching and curvature -- 11. Lecture XI. Gradient flows: an introduction -- 12. Lecture XII. Gradient flows: the Brézis-Komura theorem -- 13. Lecture XIII. Examples of gradient flows in PDEs -- 14. Lecture XIV. Gradient flows: the EDE and EDI formulations -- 15. Lecture XV. Semicontinuity and convexity of energies in the Wasserstein space -- 16. Lecture XVI. The Continuity Equation and the Hopf-Lax semigroup -- 17. Lecture XVII. The Benamou-Brenier formula -- 18. Lecture XVIII. An introduction to Otto's calculus -- 19. Lecture XIX. Heat flow, Optimal Transport and Ricci curvature.
520
$a
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations. This is the second edition of the book, first published in 2018. It includes refinement of proofs, an updated bibliography and a more detailed discussion of minmax principles, with the aim of giving two fully self-contained proofs of Kantorovich duality.
650
2 4
$a
Mathematics.
$3
527692
650
2 4
$a
Measure and Integration.
$3
672015
650
2 4
$a
Calculus of Variations and Optimization.
$3
1366302
650
1 4
$a
Analysis.
$3
669490
650
0
$a
Mathematical optimization.
$3
527675
700
1
$a
Semola, Daniele.
$e
author.
$3
1353342
700
1
$a
Brué, Elia.
$3
1481547
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
UNITEXT.
$p
La matematica per il 3+2 ;
$v
v. 139.
$3
1408214
856
4 0
$u
https://doi.org/10.1007/978-3-031-76834-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入