語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimal transport on quantum structures
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Optimal transport on quantum structures/ edited by Jan Maas ... [et al.].
其他作者:
Maas, Jan.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
ix, 321 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Mathematical optimization. -
電子資源:
https://doi.org/10.1007/978-3-031-50466-2
ISBN:
9783031504662
Optimal transport on quantum structures
Optimal transport on quantum structures
[electronic resource] /edited by Jan Maas ... [et al.]. - Cham :Springer Nature Switzerland :2024. - ix, 321 p. :ill. (some col.), digital ;24 cm. - Bolyai society mathematical studies,292947-9460 ;. - Bolyai society mathematical studies ;22..
Preface -- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli -- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen -- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse -- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan -- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale -- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé.
The flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits These notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport.
ISBN: 9783031504662
Standard No.: 10.1007/978-3-031-50466-2doiSubjects--Topical Terms:
527675
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Optimal transport on quantum structures
LDR
:02470nam a2200337 a 4500
001
1154932
003
DE-He213
005
20240920091730.0
006
m d
007
cr nn 008maaau
008
250619s2024 sz s 0 eng d
020
$a
9783031504662
$q
(electronic bk.)
020
$a
9783031504655
$q
(paper)
024
7
$a
10.1007/978-3-031-50466-2
$2
doi
035
$a
978-3-031-50466-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
072
7
$a
PB
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.O62 2024
245
0 0
$a
Optimal transport on quantum structures
$h
[electronic resource] /
$c
edited by Jan Maas ... [et al.].
260
$a
Cham :
$c
2024.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
ix, 321 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Bolyai society mathematical studies,
$x
2947-9460 ;
$v
29
505
0
$a
Preface -- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli -- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen -- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse -- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan -- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale -- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé.
520
$a
The flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits These notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport.
650
0
$a
Mathematical optimization.
$3
527675
650
0
$a
Quantum theory
$x
Mathematics.
$3
639940
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Analysis.
$3
669490
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
672519
650
2 4
$a
Measure and Integration.
$3
672015
700
1
$a
Maas, Jan.
$3
1482796
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Bolyai society mathematical studies ;
$v
22.
$3
1079689
856
4 0
$u
https://doi.org/10.1007/978-3-031-50466-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入