語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical Python = scientific computing and data science applications with Numpy, SciPy and Matplotlib /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Numerical Python/ by Robert Johansson.
其他題名:
scientific computing and data science applications with Numpy, SciPy and Matplotlib /
作者:
Johansson, Robert.
出版者:
Berkeley, CA :Apress : : 2024.,
面頁冊數:
xx, 492 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/979-8-8688-0413-7
ISBN:
9798868804137
Numerical Python = scientific computing and data science applications with Numpy, SciPy and Matplotlib /
Johansson, Robert.
Numerical Python
scientific computing and data science applications with Numpy, SciPy and Matplotlib /[electronic resource] :by Robert Johansson. - Third edition. - Berkeley, CA :Apress :2024. - xx, 492 p. :ill. (some col.), digital ;24 cm.
1. Introduction to Computing with Python -- 2. Vectors, Matrices and Multidimensional Arrays -- 3. Symbolic Computing -- 4. Plotting and Visualization -- 5. Equation Solving -- 6. Optimization -- 7. Interpolation -- 8. Integration -- 9. Ordinary Differential Equations -- 10. Sparse Matrices and Graphs -- 11. Partial Differential Equations -- 12. Data Processing and Analysis -- 13. Statistics -- 14. Statistical Modeling -- 15. Machine Learning -- 16. Bayesian Statistics -- 17. Signal and Image Processing -- 18. Data Input and Output -- 19. Code Optimization -- Appendix.
Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython.
ISBN: 9798868804137
Standard No.: 10.1007/979-8-8688-0413-7doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: QA76.73.P98 / J64 2024
Dewey Class. No.: 005.133
Numerical Python = scientific computing and data science applications with Numpy, SciPy and Matplotlib /
LDR
:03220nam a2200337 a 4500
001
1155113
003
DE-He213
005
20240928131748.0
006
m d
007
cr nn 008maaau
008
250619s2024 cau s 0 eng d
020
$a
9798868804137
$q
(electronic bk.)
020
$a
9798868804120
$q
(paper)
024
7
$a
10.1007/979-8-8688-0413-7
$2
doi
035
$a
979-8-8688-0413-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
$b
J64 2024
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
J65 2024
100
1
$a
Johansson, Robert.
$3
1070179
245
1 0
$a
Numerical Python
$h
[electronic resource] :
$b
scientific computing and data science applications with Numpy, SciPy and Matplotlib /
$c
by Robert Johansson.
250
$a
Third edition.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2024.
300
$a
xx, 492 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Introduction to Computing with Python -- 2. Vectors, Matrices and Multidimensional Arrays -- 3. Symbolic Computing -- 4. Plotting and Visualization -- 5. Equation Solving -- 6. Optimization -- 7. Interpolation -- 8. Integration -- 9. Ordinary Differential Equations -- 10. Sparse Matrices and Graphs -- 11. Partial Differential Equations -- 12. Data Processing and Analysis -- 13. Statistics -- 14. Statistical Modeling -- 15. Machine Learning -- 16. Bayesian Statistics -- 17. Signal and Image Processing -- 18. Data Input and Output -- 19. Code Optimization -- Appendix.
520
$a
Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Big Data.
$3
1017136
650
2 4
$a
Mathematical Software.
$3
672446
650
1 4
$a
Python.
$3
1115944
650
0
$a
Computer programming.
$3
527822
650
0
$a
Python (Computer program language)
$3
566246
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/979-8-8688-0413-7
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入