語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
AI for status monitoring of utility scale batteries
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
AI for status monitoring of utility scale batteries/ Shunli Wang, Kailong Liu, Yujie Wang, Daniel-I. Stroe, Carlos Fernández, Josep M. Guerrero.
作者:
Wang, Shunli.
其他作者:
Liu, Kailong.
面頁冊數:
1 online resource (385 pages)
電子資源:
Click to View
ISBN:
9781839537394
AI for status monitoring of utility scale batteries
Wang, Shunli.
AI for status monitoring of utility scale batteries
[electrical resource] /Shunli Wang, Kailong Liu, Yujie Wang, Daniel-I. Stroe, Carlos Fernández, Josep M. Guerrero. - 1st ed. - 1 online resource (385 pages) - Energy Engineering Series ;v.238. - Energy Engineering Series.
Utility-scale Li-ion batteries are poised to play key roles for the clean energy system, but their failure has severe effects. AI can help with their monitoring and management. This work covers machine learning, neural networks, and deep learning, for battery modeling.
ISBN: 9781839537394Index Terms--Genre/Form:
554714
Electronic books.
LC Class. No.: TK2945
Dewey Class. No.: 621.312424
AI for status monitoring of utility scale batteries
LDR
:01881nam a22003613i 4500
001
1155209
003
MiAaPQ
005
20250605153820.0
006
m o d |
007
cr cnu||||||||
008
250620s2023 enk o 000 0 eng d
020
$a
9781839537394
$q
(electronic bk.)
020
$z
9781839537387
035
$a
(MiAaPQ)EBC30294627
035
$a
(Au-PeEL)EBL30294627
035
$a
(OCoLC)1356002705
035
$a
EBC30294627
040
$a
MiAaPQ
$b
eng
$e
rda
$e
pn
$c
MiAaPQ
$d
MiAaPQ
050
# 4
$a
TK2945
082
0 #
$a
621.312424
100
1
$a
Wang, Shunli.
$3
1413279
245
1 0
$a
AI for status monitoring of utility scale batteries
$c
Shunli Wang, Kailong Liu, Yujie Wang, Daniel-I. Stroe, Carlos Fernández, Josep M. Guerrero.
$h
[electrical resource] /
250
$a
1st ed.
264
1
$a
Stevenage :
$b
Institution of Engineering & Technology,
$c
2023.
300
$a
1 online resource (385 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Energy Engineering Series ;
$v
v.238
520
#
$a
Utility-scale Li-ion batteries are poised to play key roles for the clean energy system, but their failure has severe effects. AI can help with their monitoring and management. This work covers machine learning, neural networks, and deep learning, for battery modeling.
588
$a
Description based on publisher supplied metadata and other sources.
590
$a
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655
# 4
$a
Electronic books.
$2
local
$3
554714
700
1 #
$a
Liu, Kailong.
$e
author.
$3
1400373
700
1 #
$a
Wang, Yujie.
$e
author.
$3
1400374
700
1 #
$a
Stroe, Daniel-Ioan.
$3
1483204
700
1 #
$a
Fernandez, Carlos.
$3
1483205
700
1 #
$a
Guerrero, Josep M.
$3
1461967
776
0 8
$i
Print version:
$a
Wang, Shunli
$t
AI for Status Monitoring of Utility Scale Batteries
$d
Stevenage : Institution of Engineering & Technology,c2023
$z
9781839537387
797
2
$a
ProQuest (Firm)
830
0
$a
Energy Engineering Series
$3
1483206
856
4 0
$u
https://ebookcentral.proquest.com/lib/nfu/detail.action?docID=30294627
$z
Click to View
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入